1 resultado para Quadrants (Astronomical instruments)

em KUPS-Datenbank - Universität zu Köln - Kölner UniversitätsPublikationsServer


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis is focused on improving the calibration accuracy of sub-millimeter astronomical observations. The wavelength range covered by observational radio astronomy has been extended to sub-millimeter and far infrared with the advancement of receiver technology in recent years. Sub-millimeter observations carried out with airborne and ground-based telescopes typically suffer from 10% to 90% attenuation of the astronomical source signals by the terrestrial atmosphere. The amount of attenuation can be derived from the measured brightness of the atmospheric emission. In order to do this, the knowledge of the atmospheric temperature and chemical composition, as well as the frequency-dependent optical depth at each place along the line of sight is required. The altitude-dependent air temperature and composition are estimated using a parametrized static atmospheric model, which is described in Chapter 2, because direct measurements are technically and financially infeasible. The frequency dependent optical depth of the atmosphere is computed with a radiative transfer model based on the theories of quantum mechanics and, in addition, some empirical formulae. The choice, application, and improvement of third party radiative transfer models are discussed in Chapter 3. The application of the calibration procedure, which is described in Chapter 4, to the astronomical data observed with the SubMillimeter Array Receiver for Two Frequencies (SMART), and the German REceiver for Astronomy at Terahertz Frequencies (GREAT), is presented in Chapters 5 and 6. The brightnesses of atmospheric emission were fitted consistently to the simultaneous multi-band observation data from GREAT at 1.2 ∼ 1.4 and 1.8 ∼ 1.9 THz with a single set of parameters of the static atmospheric model. On the other hand, the cause of the inconsistency between the model parameters fitted from the 490 and 810 GHz data of SMART is found to be the lack of calibration of the effective cold load temperature. Besides the correctness of atmospheric modeling, the stability of the receiver is also important to achieving optimal calibration accuracy. The stabilities of SMART and GREAT are analyzed with a special calibration procedure, namely the “load calibration". The effects of the drift and fluctuation of the receiver gain and noise temperature on calibration accuracy are discussed in Chapters 5 and 6. Alternative observing strategies are proposed to combat receiver instability. The methods and conclusions presented in this thesis are applicable to the atmospheric calibration of sub-millimeter astronomical observations up to at least 4.7 THz (the H channel frequency of GREAT) for observations carried out from ∼ 4 to 14 km altitude. The procedures for receiver gain calibration and stability test are applicable to other instruments using the same calibration approach as that for SMART and GREAT. The structure of the high performance, modular, and extensible calibration program used and further developed for this thesis work is presented in the Appendix C.