2 resultados para Numerical Models
em KUPS-Datenbank - Universität zu Köln - Kölner UniversitätsPublikationsServer
Resumo:
The West African Monsoon (WAM) and its representation in numerical models are strongly influenced by the Saharan Heat Low (SHL), a low-pressure system driven by radiative heating over the central Sahara and ventilated by the cold and moist inflow from adjacent oceans. It has recently been shown that a significant part of the southerly moisture flux into the SHL originates from convective cold pools over the Sahel. These density currents driven by evaporation of rain are largely absent in models with parameterized convection. This crucial issue has been hypothesized to contribute to the inability of many climate models to reproduce the variability of the WAM. Here, the role of convective cold pools approaching the SHL from the Atlas Mountains, which are a strong orographic trigger for deep convection in Northwest Africa, is analyzed. Knowledge about the frequency of these events, as well as their impact on large-scale dynamics, is required to understand their contribution to the variability of the SHL and to known model uncertainties. The first aspect is addressed through the development of an objective and automated method for the generation of multi-year climatologies not available before. The algorithm combines freely available standard surface observations with satellite microwave data. Representativeness of stations and influence of their spatial density are addressed by comparison to a satellite-only climatology. Applying this algorithm to data from automated weather stations and manned synoptic stations in and south of the Atlas Mountains reveals the frequent occurrence. On the order of 6 events per month are detected from May to September when the SHL is in its northernmost position. The events tend to cluster into several-days long convectively active periods, often with strong events on consecutive days. This study is the first to diagnose dynamical impacts of such periods on the SHL, based on simulations of two example cases using the Weather Research and Forecast (WRF) model at convection-permitting resolution. Sensitivity experiments with artificially removed cold pools as well as different resolutions and parameterizations are conducted. Results indicate increases in surface pressure of more than 1 hPa and significant moisture transports into the desert over several days. This moisture affects radiative heating and thus the energy balance of the SHL. Even though cold pool events north of the SHL are less frequent when compared to their Sahelian counterparts, it is shown that they gain importance due to their temporal clustering on synoptic timescale. Together with studies focusing on the Sahel, this work emphasizes the need for improved parameterization schemes for deep convection in order to produce more reliable climate projections for the WAM.
Resumo:
Light is the main information about the interstellar medium accessible on Earth. Based on this information one can conclude on the composition of the region where the light originates from, as well as on its history. The requirement for this is that it is possible to identify the different absorption and emission features in the spectrum and assign them to certain molecules, atoms or ions. To enable the identification of the different species, precise spectroscopic investigations of the species in the laboratory are necessary. In this work a new spectroscopic method is presented, which can be used to record pure rotational spectra of mass selected, cold, stored molecular ions. It is based on the idea of state specific attachment of helium atoms to the stored molecular ions. The new technique has been made possible through the development and recent completion of two new 22-pole ion trap instruments in the work group of Laboratory Astrophysics at the University of Cologne. These new instruments have the advantage to reach temperatures as low as 4K compared to the 10K of the predecessor instrument. These low temperatures enable the ternary attachment of helium atoms to the stored molecular ions and by this make it possible to develop this new method for pure rotational spectroscopy. According to this, this work is divided into two parts. The first part deals with the new FELion experiment that was build and characterized in the first part of the thesis. FELion is a cryogenic 22-pole ion trap apparatus, allowing to generate, mass select, store and cool down, and analyze molecular ions. The different components of the instrument, e.g. the Storage Ion Source for generating the ions or the first quadrupole mass filter, are described and characterized in this part. Besides this also the newly developed control and data acquisitions system is introduced. With this instrument the measurements presented in the second part of the work were performed. The second part deals with the new action spectroscopic method of state-selective helium attachment to the stored molecular ions. For a deeper analysis of the new technique the systems of CD+ and helium and HCO+ and helium are investigated in detail. Analytical and numerical models of the process are presented and compared to experimental results. The results of these investigations point to a seemingly very general applicability of the new method to a wide class of molecular ions. In the final part of the thesis measurements of the rotational spectrum of l-C3H+ are presented. These measurements have to be high-lighted, since it was possible for the first time in the laboratory to unambiguously measure four low-lying rotational transitions of l-C3H+. These measurements (Brünken et al. ApJL 783, L4 (2014)) enabled the reliable identification of so far unidentified emision lines observed in several regions of the interstellar medium (Pety et al. Astron. Astrophys. 548, A68 (2012), McGuire et al. The Astrophysical Journal 774, 56 (2013) and McGuire et al. The Astrophysical Journal 783, 36 (2014)).