2 resultados para Non-reversible stochastic dynamics
em KUPS-Datenbank - Universität zu Köln - Kölner UniversitätsPublikationsServer
Resumo:
With progressive climate change, the preservation of biodiversity is becoming increasingly important. Only if the gene pool is large enough and requirements of species are diverse, there will be species that can adapt to the changing circumstances. To maintain biodiversity, we must understand the consequences of the various strategies. Mathematical models of population dynamics could provide prognoses. However, a model that would reproduce and explain the mechanisms behind the diversity of species that we observe experimentally and in nature is still needed. A combination of theoretical models with detailed experiments is needed to test biological processes in models and compare predictions with outcomes in reality. In this thesis, several food webs are modeled and analyzed. Among others, models are formulated of laboratory experiments performed in the Zoological Institute of the University of Cologne. Numerical data of the simulations is in good agreement with the real experimental results. Via numerical simulations it can be demonstrated that few assumptions are necessary to reproduce in a model the sustained oscillations of the population size that experiments show. However, analysis indicates that species "thrown together by chance" are not very likely to survive together over long periods. Even larger food nets do not show significantly different outcomes and prove how extraordinary and complicated natural diversity is. In order to produce such a coexistence of randomly selected species—as the experiment does—models require additional information about biological processes or restrictions on the assumptions. Another explanation for the observed coexistence is a slow extinction that takes longer than the observation time. Simulated species survive a comparable period of time before they die out eventually. Interestingly, it can be stated that the same models allow the survival of several species in equilibrium and thus do not follow the so-called competitive exclusion principle. This state of equilibrium is more fragile, however, to changes in nutrient supply than the oscillating coexistence. Overall, the studies show, that having a diverse system means that population numbers are probably oscillating, and on the other hand oscillating population numbers stabilize a food web both against demographic noise as well as against changes of the habitat. Model predictions can certainly not be converted at their face value into policies for real ecosystems. But the stabilizing character of fluctuations should be considered in the regulations of animal populations.
Resumo:
In this thesis the critical dynamics of several magnetoelectric compounds at their phase transition were examined. Mostly measurements of the dielectric properties in the frequency range of below 1 Hz up to 5 GHz were employed to evaluate the critical exponents for both magnetic field and temperature-dependent measurements. Most of the materials that are part of this work show anomalous behavior, especially at very low temperatures where quantum fluctuations are of the order of or even dominate those induced thermally. This anomalous behavior manifests in different forms. In Dy2Ti2O7 we demonstrate the existence of electric dipoles on magnetic monopoles. Here the dynamics at the critical endpoint located at 0.36K and in a magnetic field of 1T parallel to the [111] direction are of special interest. At this critical endpoint the expected critical slowing down of the dynamics could not only not be observed but instead the opposite, critical speeding-up by several orders of magnitude, could be demonstrated. Furthermore, we show that the phase diagram of Dy2Ti2O7 in this field direction can be reproduced solely from the dynamical properties, for example the resonance frequency of the observed relaxation that is connected to the monopole movement. Away from this point of the phase diagram the dynamics are slowing-down with reduction of temperature as one would expect. Additional measurements on Y2Ti2O7, a structurally identical but non-magnetic material, show only slowing down with reduction of temperature and no additional features. A possible explanation for the observed critical speeding-up is a coherent movement of magnetic monopoles close to the critical field that increases the resonance frequency by reducing the damping of the process. LiCuVO4 on the other hand behaves normally at its phase transition as long as the temperature is higher than 0.4 K. In this temperature regime the dynamics show critical slowing-down analogous to classical ferroelectric materials. This analogy extends also towards higher frequencies where the permittivity displays a ‘dispersion’ minimum that is temperature-dependent but of the order of 2 GHz. Below 0.4K the observed behavior changes drastically. Here we found no longer relaxational behavior but instead an excitation with very low energy. This low energy excitation was predicted by theory and is caused by nearly gapless soliton excitations within the 1D Cu2+ chains of LiCuVO4. Finally, in TbMnO3 the dynamics of the phase transition into the multiferroic phase was observed at roughly 27 K, a much higher temperature compared to the other materials. Here the expected critical slowing-down was observed, even though in low-frequency measurements this transition into the ferroelectric phase is overshadowed by the so-called c-axis relaxation. Therefore, only frequencies above 1MHz could be used to determine the critical exponents for both temperatureand magnetic-field-dependent measurements. This was done for both the peak frequency as well as the relaxation strength. In TbMnO3 an electromagnetic soft-mode with small optical weight causes the observed fluctuations, similar to the case of multiferroic MnWO4.