2 resultados para MITOCHONDRIAL CONTROL
em KUPS-Datenbank - Universität zu Köln - Kölner UniversitätsPublikationsServer
Resumo:
Since Altmann recognized ubiquitously distributed "bioblasts" in 1890, understanding of mitochondria has evolved from "elementary organisms" living inside cells and carrying out vital functions, over the Harman's "free radical theory" in 1956, to one of the driving forces of aging and cause of multiple associated diseases impacting society today. While a tremendous amount of work has contributed to the understanding of mitochondrial biology in different model organisms, the precise molecular mechanisms of basic mitochondrial function have yet to be deciphered. By employing an RNA interference mediated screen in Caenorhabditis elegans, we identified two transcription factors: SPTF-3, a member of Sp1 family, and an uncharacterized, nematode specific W04D2.4. We propose that both proteins modulate expression of many genes with regard to mitochondrial function including mitochondrial single-stranded binding protein encoded by mtss-1, whose promoter was used as transcriptional reporter in the screen. Further, RNA sequencing data indicate that W04D2.4 indirectly regulates expression of mitochondrial DNA via control of genes functionally related to mitochondrial replication and translation machineries. We also demonstrate that from all interventions targeting cytosolic translation, MTSS-1 levels are elevated only upon knockdown of genes encoding cytosolic ribosomal proteins. Reduction of ribosomes leads to increased sptf-3 translation, most likely in an internal ribosome entry side (IRES) mediated manner, eventually inducing mtss-1 expression. Moreover, we identify a novel role for SPTF-3 in the regulation of mitochondrial unfolded stress response (UPRmt) activation, but not endoplasmatic reticulum or oxidative stress responses. Taken together, this study identifies two transcription factors previously not associated with mitochondrial biogenesis and UPRmt in C. elegans, establishing a basis for further investigation of mito-nuclear interactions.
Resumo:
Salt stress is known to have severe effects on plant health and fecundity, and mitochondria are known to be an essential part of the plant salt stress response. Arabidopsis thaliana serves as an excellent model to study the effects of salt stress as well as mitochondrial morphology. Arabidopsis contains several homologues to known mitochondrial proteins, including the fission protein FIS1A, and FMT, a homologue of the CLU subfamily. We sought to examine the effects of salt stress on knockout lines of FIS1A and FMT, as well as a transgenic line overexpressing FMT (FMT-OE) in columella cells in the root cap of Arabidopsis. fmt mutants displayed defects in both root and leaf growth, as well as a delay in flowering time. These mutants also showed a pronounced increase in mitochondrial clustering and number. FMT-OE mutants displayed severe defects in germination, including a decrease in total germination, and an increase in the number of days to germination. fis1A mutants exhibited shorter roots and slightly shorter leaves, as well as a tendency towards random mitochondrial clustering in root cells. Salt stress was shown to affect various mitochondrial parameters, including an increase in mitochondrial number and clustering, as well as a decrease in mitochondrial area. These results reveal a previously unknown role for FMT in germination and flowering in Arabidopsis, as well as insight into the effects of salt stress on mitochondrial morphology. FMT, along with FIS1A, may also help to regulate mitochondrial number and clustering, as well as root and leaf growth, under both control and salt-stressed conditions. This has implications for both FMT and FIS1A in whole-plant morphology as well as the plant salt stress response.