1 resultado para Lipschitz trivial
em KUPS-Datenbank - Universität zu Köln - Kölner UniversitätsPublikationsServer
Filtro por publicador
- KUPS-Datenbank - Universität zu Köln - Kölner UniversitätsPublikationsServer (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (4)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (19)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (8)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (10)
- Aston University Research Archive (21)
- Biblioteca de Teses e Dissertações da USP (4)
- Biblioteca Digital | Sistema Integrado de Documentación | UNCuyo - UNCUYO. UNIVERSIDAD NACIONAL DE CUYO. (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (14)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (27)
- Bibloteca do Senado Federal do Brasil (6)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (45)
- Brock University, Canada (5)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (24)
- CaltechTHESIS (1)
- CentAUR: Central Archive University of Reading - UK (29)
- Central European University - Research Support Scheme (3)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (7)
- Cochin University of Science & Technology (CUSAT), India (4)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (4)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (38)
- CORA - Cork Open Research Archive - University College Cork - Ireland (3)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (3)
- CUNY Academic Works (2)
- Dalarna University College Electronic Archive (2)
- Department of Computer Science E-Repository - King's College London, Strand, London (6)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons at Florida International University (4)
- Digital Peer Publishing (3)
- DigitalCommons@The Texas Medical Center (1)
- DigitalCommons@University of Nebraska - Lincoln (3)
- Digitale Sammlungen - Goethe-Universität Frankfurt am Main (10)
- Diposit Digital de la UB - Universidade de Barcelona (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (19)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (2)
- eScholarship Repository - University of California (1)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (2)
- Institutional Repository of Leibniz University Hannover (3)
- Instituto Politécnico do Porto, Portugal (11)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (3)
- Martin Luther Universitat Halle Wittenberg, Germany (1)
- Massachusetts Institute of Technology (1)
- Memoria Académica - FaHCE, UNLP - Argentina (3)
- Memorial University Research Repository (1)
- Ministerio de Cultura, Spain (22)
- National Center for Biotechnology Information - NCBI (3)
- Nottingham eTheses (8)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- Publishing Network for Geoscientific & Environmental Data (3)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (3)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (1)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (6)
- Repositório da Produção Científica e Intelectual da Unicamp (3)
- Repositorio de la Universidad de Cuenca (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (10)
- Repositório Digital da Universidade Municipal de São Caetano do Sul - USCS (3)
- Repositório Institucional da Universidade de Aveiro - Portugal (2)
- Repositório Institucional da Universidade Federal do Rio Grande do Norte (2)
- Repositorio Institucional de la Universidad de Málaga (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (103)
- Repositorio Institucional Universidad EAFIT - Medelin - Colombia (1)
- Research Open Access Repository of the University of East London. (1)
- Royal College of Art Research Repository - Uninet Kingdom (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (10)
- Scielo Saúde Pública - SP (12)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (2)
- Universidad de Alicante (12)
- Universidad del Rosario, Colombia (6)
- Universidad Politécnica de Madrid (37)
- Universidade Complutense de Madrid (5)
- Universidade do Minho (5)
- Universidade Federal do Pará (7)
- Universidade Federal do Rio Grande do Norte (UFRN) (23)
- Universidade Metodista de São Paulo (3)
- Universidade Técnica de Lisboa (1)
- Universita di Parma (3)
- Universitat de Girona, Spain (4)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (9)
- Université de Lausanne, Switzerland (26)
- Université de Montréal (3)
- Université de Montréal, Canada (21)
- University of Connecticut - USA (1)
- University of Michigan (6)
- University of Queensland eSpace - Australia (20)
- University of Southampton, United Kingdom (2)
- University of Washington (1)
- WestminsterResearch - UK (1)
Resumo:
The quotient of a finite-dimensional Euclidean space by a finite linear group inherits different structures from the initial space, e.g. a topology, a metric and a piecewise linear structure. The question when such a quotient is a manifold leads to the study of finite groups generated by reflections and rotations, i.e. by orthogonal transformations whose fixed point subspace has codimension one or two. We classify such groups and thereby complete earlier results by M. A. Mikhaîlova from the 70s and 80s. Moreover, we show that a finite group is generated by reflections and) rotations if and only if the corresponding quotient is a Lipschitz-, or equivalently, a piecewise linear manifold (with boundary). For the proof of this statement we show in addition that each piecewise linear manifold of dimension up to four on which a finite group acts by piecewise linear homeomorphisms admits a compatible smooth structure with respect to which the group acts smoothly. This solves a challenge by Thurston and confirms a conjecture by Kwasik and Lee. In the topological category a counterexample to the above mentioned characterization is given by the binary icosahedral group. We show that this is the only counterexample up to products. In particular, we answer the question by Davis of when the underlying space of an orbifold is a topological manifold. As a corollary of our results we generalize a fixed point theorem by Steinberg on unitary reflection groups to finite groups generated by reflections and rotations. As an application thereof we answer a question by Petrunin on quotients of spheres.