2 resultados para HOMOLOG
em KUPS-Datenbank - Universität zu Köln - Kölner UniversitätsPublikationsServer
Resumo:
CEP161 is a novel component of the Dictyostelium discoideum centrosome and is the ortholog of mammalian CDK5RAP2. Mutations in CDK5RAP2 are associated with autosomal recessive primary microcephaly (MCPH), a neurodevelopmental disorder characterized by reduced head circumference, a reduction in the size of the cerebral cortex and a mild to moderate mental retardation. Here we show that the amino acids 1-763 of the 1381 amino acids of CEP161 protein are sufficient for centrosomal targeting and centrosome association. AX2 cells over-expressing truncated and full length CEP161 proteins have defects in growth and development. Furthermore, we identified the kinase SvkA (severinkinase A) as its interaction partner which is the D. discoideum Hippo related kinase designated here as Hrk-svk. Hrk-svk is the direct homolog of human MST1. Both proteins co-localize at the centrosome. We further demonstrate that this interaction is also conserved in mammals. We were able to show that CDK5RAP2 interacts with MST1 and TAZ and it also down-regulates the transcript levels of TAZ in HEK293T cells. Taken together, our data on Dictyostelium CEP161 and human CDK5RAP2 supports the hypothesis that CDK5RAP2 as a novel regulator of Hippo signaling pathway. We propose that CDK5RAP2 mutations may lead to a decrease in the number of neurons and the subsequent reduction of brain size by regulating the hippo signaling pathway.
Resumo:
The Endosomal Sorting Complex Required for Transport (ESCRT)-complex is composed of four complexes, ESCRT-0-III. They sequentially act on a late endosome to sort mono-ubiquitinated transmembrane proteins into the intralumenal vesicle, forming of a multivesicular body(MVB) that is delivered to vacuole for degradation. In Arabidopsis thaliana, the loss of an ESCRT-I component, elch displays a cytokinesis defect; while a dominant negative expression of an ESCRT-III component results in cell death due to vacuolar loss. In this work, the function of a plant-specific ELCH-interactor, CELL DEATH RELATED FYVE/SYLF DOMAIN CONTAINING 1 (CFS1) and its influences on the ESCRT-complex function are investigated. CFS1 is a phosphatidylinositol-3-phosphate- and actin-binding protein. The cfs1 mutants mimic lesions in the first eldest leaf that propagate to the next eldest one. Genetic analyses have demonstrated that cell death in cfs1 does not require a functional ESCRT-I component; nevertheless, the loss of CFS1 alleviates elchcytokinesis defect, suggesting its influence on the ESCRT-I function. Further analyses reveal that cfs1 accumulates autophagosomes throughout its lifespan due to a decrease in autophagosome degradation, suggesting that as the plant ages, the cumulated autophagosomes falsely trigger effectors-triggered immunity that executes cell death in cfs1. As the ESCRT-complex has been demonstrated to be involved in the delivery of autophagosomes to vacuole and CFS1 homolog, CFS2 reportedly interacts with ATG8, it can be postulated from the results of this work that CFS1 alone or together with CFS2 function in sequestering mature autophagosomes onto MVBs. At the MVBs, the ESCRT-complex then mediates the fusion of autophagosome and MVB for subsequent delivery to vacuole.