2 resultados para Generalized extreme value distribution
em KUPS-Datenbank - Universität zu Köln - Kölner UniversitätsPublikationsServer
Resumo:
Strong convective events can produce extreme precipitation, hail, lightning or gusts, potentially inducing severe socio-economic impacts. These events have a relatively small spatial extension and, in most cases, a short lifetime. In this study, a model is developed for estimating convective extreme events based on large scale conditions. It is shown that strong convective events can be characterized by a Weibull distribution of radar-based rainfall with a low shape and high scale parameter value. A radius of 90km around a station reporting a convective situation turned out to be suitable. A methodology is developed to estimate the Weibull parameters and thus the occurrence probability of convective events from large scale atmospheric instability and enhanced near-surface humidity, which are usually found on a larger scale than the convective event itself. Here, the probability for the occurrence of extreme convective events is estimated from the KO-index indicating the stability, and relative humidity at 1000hPa. Both variables are computed from ERA-Interim reanalysis. In a first version of the methodology, these two variables are applied to estimate the spatial rainfall distribution and to estimate the occurrence of a convective event. The developed method shows significant skill in estimating the occurrence of convective events as observed at synoptic stations, lightning measurements, and severe weather reports. In order to take frontal influences into account, a scheme for the detection of atmospheric fronts is implemented. While generally higher instability is found in the vicinity of fronts, the skill of this approach is largely unchanged. Additional improvements were achieved by a bias-correction and the use of ERA-Interim precipitation. The resulting estimation method is applied to the ERA-Interim period (1979-2014) to establish a ranking of estimated convective extreme events. Two strong estimated events that reveal a frontal influence are analysed in detail. As a second application, the method is applied to GCM-based decadal predictions in the period 1979-2014, which were initialized every year. It is shown that decadal predictive skill for convective event frequencies over Germany is found for the first 3-4 years after the initialization.
Resumo:
On most if not all evaluatively relevant dimensions such as the temperature level, taste intensity, and nutritional value of a meal, one range of adequate, positive states is framed by two ranges of inadequate, negative states, namely too much and too little. This distribution of positive and negative states in the information ecology results in a higher similarity of positive objects, people, and events to other positive stimuli as compared to the similarity of negative stimuli to other negative stimuli. In other words, there are fewer ways in which an object, a person, or an event can be positive as compared to negative. Oftentimes, there is only one way in which a stimulus can be positive (e.g., a good meal has to have an adequate temperature level, taste intensity, and nutritional value). In contrast, there are many different ways in which a stimulus can be negative (e.g., a bad meal can be too hot or too cold, too spicy or too bland, or too fat or too lean). This higher similarity of positive as compared to negative stimuli is important, as similarity greatly impacts speed and accuracy on virtually all levels of information processing, including attention, classification, categorization, judgment and decision making, and recognition and recall memory. Thus, if the difference in similarity between positive and negative stimuli is a general phenomenon, it predicts and may explain a variety of valence asymmetries in cognitive processing (e.g., positive as compared to negative stimuli are processed faster but less accurately). In my dissertation, I show that the similarity asymmetry is indeed a general phenomenon that is observed in thousands of words and pictures. Further, I show that the similarity asymmetry applies to social groups. Groups stereotyped as average on the two dimensions agency / socio-economic success (A) and conservative-progressive beliefs (B) are stereotyped as positive or high on communion (C), while groups stereotyped as extreme on A and B (e.g., managers, homeless people, punks, and religious people) are stereotyped as negative or low on C. As average groups are more similar to one another than extreme groups, according to this ABC model of group stereotypes, positive groups are mentally represented as more similar to one another than negative groups. Finally, I discuss implications of the ABC model of group stereotypes, pointing to avenues for future research on how stereotype content shapes social perception, cognition, and behavior.