1 resultado para Elementary Methods In Number Theory
em KUPS-Datenbank - Universität zu Köln - Kölner UniversitätsPublikationsServer
Filtro por publicador
- KUPS-Datenbank - Universität zu Köln - Kölner UniversitätsPublikationsServer (1)
- Repository Napier (1)
- Aberdeen University (2)
- Abertay Research Collections - Abertay University’s repository (1)
- Aberystwyth University Repository - Reino Unido (3)
- Academic Archive On-line (Stockholm University; Sweden) (1)
- Academic Research Repository at Institute of Developing Economies (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (7)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (2)
- Aquatic Commons (10)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (4)
- Archive of European Integration (2)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (1)
- Aston University Research Archive (35)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (3)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (9)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (2)
- Biodiversity Heritage Library, United States (3)
- Bioline International (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (28)
- Boston University Digital Common (4)
- Brock University, Canada (11)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (6)
- CaltechTHESIS (12)
- Cambridge University Engineering Department Publications Database (35)
- CentAUR: Central Archive University of Reading - UK (65)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (21)
- Cochin University of Science & Technology (CUSAT), India (13)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (3)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (6)
- CUNY Academic Works (1)
- Dalarna University College Electronic Archive (9)
- Department of Computer Science E-Repository - King's College London, Strand, London (1)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (2)
- Digital Commons - Michigan Tech (1)
- Digital Commons - Montana Tech (2)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons at Florida International University (5)
- Digital Peer Publishing (1)
- DigitalCommons - The University of Maine Research (1)
- DigitalCommons@The Texas Medical Center (7)
- DRUM (Digital Repository at the University of Maryland) (4)
- Duke University (3)
- Düsseldorfer Dokumenten- und Publikationsservice (1)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (4)
- Fachlicher Dokumentenserver Paedagogik/Erziehungswissenschaften (1)
- Funes: Repositorio digital de documentos en Educación Matemática - Colombia (1)
- Greenwich Academic Literature Archive - UK (2)
- Helda - Digital Repository of University of Helsinki (29)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Indian Institute of Science - Bangalore - Índia (52)
- Institute of Public Health in Ireland, Ireland (1)
- INSTITUTO DE PESQUISAS ENERGÉTICAS E NUCLEARES (IPEN) - Repositório Digital da Produção Técnico Científica - BibliotecaTerezine Arantes Ferra (1)
- Instituto Politécnico do Porto, Portugal (3)
- Massachusetts Institute of Technology (3)
- Ministerio de Cultura, Spain (4)
- National Center for Biotechnology Information - NCBI (3)
- Nottingham eTheses (1)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (2)
- Portal de Revistas Científicas Complutenses - Espanha (3)
- Publishing Network for Geoscientific & Environmental Data (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (108)
- Queensland University of Technology - ePrints Archive (112)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (3)
- Repositório do ISCTE - Instituto Universitário de Lisboa (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (2)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (44)
- Repositorio Institucional Universidad de Medellín (1)
- Research Open Access Repository of the University of East London. (3)
- SAPIENTIA - Universidade do Algarve - Portugal (3)
- Universidad de Alicante (2)
- Universidad del Rosario, Colombia (5)
- Universidad Politécnica de Madrid (9)
- Universidade Técnica de Lisboa (1)
- Universitat de Girona, Spain (4)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (4)
- Université de Lausanne, Switzerland (3)
- Université de Montréal, Canada (13)
- University of Connecticut - USA (1)
- University of Michigan (88)
- University of Queensland eSpace - Australia (20)
- University of Southampton, United Kingdom (1)
- University of Washington (4)
- WestminsterResearch - UK (2)
- Worcester Research and Publications - Worcester Research and Publications - UK (1)
Resumo:
This thesis builds a framework for evaluating downside risk from multivariate data via a special class of risk measures (RM). The peculiarity of the analysis lies in getting rid of strong data distributional assumptions and in orientation towards the most critical data in risk management: those with asymmetries and heavy tails. At the same time, under typical assumptions, such as the ellipticity of the data probability distribution, the conformity with classical methods is shown. The constructed class of RM is a multivariate generalization of the coherent distortion RM, which possess valuable properties for a risk manager. The design of the framework is twofold. The first part contains new computational geometry methods for the high-dimensional data. The developed algorithms demonstrate computability of geometrical concepts used for constructing the RM. These concepts bring visuality and simplify interpretation of the RM. The second part develops models for applying the framework to actual problems. The spectrum of applications varies from robust portfolio selection up to broader spheres, such as stochastic conic optimization with risk constraints or supervised machine learning.