2 resultados para Defects in crystals

em KUPS-Datenbank - Universität zu Köln - Kölner UniversitätsPublikationsServer


Relevância:

90.00% 90.00%

Publicador:

Resumo:

CEP161 is a novel component of the Dictyostelium discoideum centrosome and is the ortholog of mammalian CDK5RAP2. Mutations in CDK5RAP2 are associated with autosomal recessive primary microcephaly (MCPH), a neurodevelopmental disorder characterized by reduced head circumference, a reduction in the size of the cerebral cortex and a mild to moderate mental retardation. Here we show that the amino acids 1-763 of the 1381 amino acids of CEP161 protein are sufficient for centrosomal targeting and centrosome association. AX2 cells over-expressing truncated and full length CEP161 proteins have defects in growth and development. Furthermore, we identified the kinase SvkA (severinkinase A) as its interaction partner which is the D. discoideum Hippo related kinase designated here as Hrk-svk. Hrk-svk is the direct homolog of human MST1. Both proteins co-localize at the centrosome. We further demonstrate that this interaction is also conserved in mammals. We were able to show that CDK5RAP2 interacts with MST1 and TAZ and it also down-regulates the transcript levels of TAZ in HEK293T cells. Taken together, our data on Dictyostelium CEP161 and human CDK5RAP2 supports the hypothesis that CDK5RAP2 as a novel regulator of Hippo signaling pathway. We propose that CDK5RAP2 mutations may lead to a decrease in the number of neurons and the subsequent reduction of brain size by regulating the hippo signaling pathway.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Salt stress is known to have severe effects on plant health and fecundity, and mitochondria are known to be an essential part of the plant salt stress response. Arabidopsis thaliana serves as an excellent model to study the effects of salt stress as well as mitochondrial morphology. Arabidopsis contains several homologues to known mitochondrial proteins, including the fission protein FIS1A, and FMT, a homologue of the CLU subfamily. We sought to examine the effects of salt stress on knockout lines of FIS1A and FMT, as well as a transgenic line overexpressing FMT (FMT-OE) in columella cells in the root cap of Arabidopsis. fmt mutants displayed defects in both root and leaf growth, as well as a delay in flowering time. These mutants also showed a pronounced increase in mitochondrial clustering and number. FMT-OE mutants displayed severe defects in germination, including a decrease in total germination, and an increase in the number of days to germination. fis1A mutants exhibited shorter roots and slightly shorter leaves, as well as a tendency towards random mitochondrial clustering in root cells. Salt stress was shown to affect various mitochondrial parameters, including an increase in mitochondrial number and clustering, as well as a decrease in mitochondrial area. These results reveal a previously unknown role for FMT in germination and flowering in Arabidopsis, as well as insight into the effects of salt stress on mitochondrial morphology. FMT, along with FIS1A, may also help to regulate mitochondrial number and clustering, as well as root and leaf growth, under both control and salt-stressed conditions. This has implications for both FMT and FIS1A in whole-plant morphology as well as the plant salt stress response.