1 resultado para Collaborative learning and applications
em KUPS-Datenbank - Universität zu Köln - Kölner UniversitätsPublikationsServer
Filtro por publicador
- JISC Information Environment Repository (1)
- KUPS-Datenbank - Universität zu Köln - Kölner UniversitätsPublikationsServer (1)
- Aberdeen University (1)
- Abertay Research Collections - Abertay University’s repository (1)
- Academic Archive On-line (Stockholm University; Sweden) (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (4)
- AMS Campus - Alm@DL - Università di Bologna (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (15)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (10)
- Applied Math and Science Education Repository - Washington - USA (2)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (10)
- Archive of European Integration (11)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (1)
- Aston University Research Archive (80)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (11)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (10)
- Biodiversity Heritage Library, United States (2)
- Bioline International (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (50)
- Brock University, Canada (15)
- Bucknell University Digital Commons - Pensilvania - USA (5)
- Bulgarian Digital Mathematics Library at IMI-BAS (15)
- CaltechTHESIS (1)
- CentAUR: Central Archive University of Reading - UK (58)
- Cochin University of Science & Technology (CUSAT), India (7)
- Collection Of Biostatistics Research Archive (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (6)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (41)
- Cor-Ciencia - Acuerdo de Bibliotecas Universitarias de Córdoba (ABUC), Argentina (3)
- CORA - Cork Open Research Archive - University College Cork - Ireland (2)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- CUNY Academic Works (3)
- Dalarna University College Electronic Archive (3)
- Department of Computer Science E-Repository - King's College London, Strand, London (14)
- Digital Archives@Colby (1)
- Digital Commons - Michigan Tech (2)
- Digital Commons at Florida International University (11)
- Digital Peer Publishing (7)
- DigitalCommons - The University of Maine Research (1)
- DigitalCommons@The Texas Medical Center (3)
- DigitalCommons@University of Nebraska - Lincoln (3)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (29)
- DRUM (Digital Repository at the University of Maryland) (4)
- Duke University (2)
- eScholarship Repository - University of California (1)
- Fachlicher Dokumentenserver Paedagogik/Erziehungswissenschaften (2)
- FUNDAJ - Fundação Joaquim Nabuco (2)
- Glasgow Theses Service (1)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Institute of Public Health in Ireland, Ireland (1)
- Institutional Repository of Leibniz University Hannover (1)
- Instituto Politécnico do Porto, Portugal (14)
- Instituto Superior de Psicologia Aplicada - Lisboa (1)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (1)
- Martin Luther Universitat Halle Wittenberg, Germany (2)
- Massachusetts Institute of Technology (6)
- Memorial University Research Repository (2)
- Ministerio de Cultura, Spain (12)
- National Center for Biotechnology Information - NCBI (11)
- Open University Netherlands (1)
- Portal de Revistas Científicas Complutenses - Espanha (2)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (4)
- RDBU - Repositório Digital da Biblioteca da Unisinos (1)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (4)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (6)
- Repositorio de la Universidad de Cuenca (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (3)
- Repositório Institucional da Universidade de Aveiro - Portugal (4)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (34)
- Research Open Access Repository of the University of East London. (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (5)
- School of Medicine, Washington University, United States (1)
- Scielo Saúde Pública - SP (15)
- Scientific Open-access Literature Archive and Repository (1)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (4)
- Universidad de Alicante (4)
- Universidad del Rosario, Colombia (3)
- Universidad Politécnica de Madrid (23)
- Universidade do Minho (3)
- Universitat de Girona, Spain (6)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (3)
- Université de Lausanne, Switzerland (25)
- Université de Montréal, Canada (7)
- University of Canberra Research Repository - Australia (2)
- University of Connecticut - USA (1)
- University of Michigan (69)
- University of Queensland eSpace - Australia (64)
- University of Southampton, United Kingdom (14)
- University of Washington (4)
- Worcester Research and Publications - Worcester Research and Publications - UK (6)
Resumo:
This thesis builds a framework for evaluating downside risk from multivariate data via a special class of risk measures (RM). The peculiarity of the analysis lies in getting rid of strong data distributional assumptions and in orientation towards the most critical data in risk management: those with asymmetries and heavy tails. At the same time, under typical assumptions, such as the ellipticity of the data probability distribution, the conformity with classical methods is shown. The constructed class of RM is a multivariate generalization of the coherent distortion RM, which possess valuable properties for a risk manager. The design of the framework is twofold. The first part contains new computational geometry methods for the high-dimensional data. The developed algorithms demonstrate computability of geometrical concepts used for constructing the RM. These concepts bring visuality and simplify interpretation of the RM. The second part develops models for applying the framework to actual problems. The spectrum of applications varies from robust portfolio selection up to broader spheres, such as stochastic conic optimization with risk constraints or supervised machine learning.