1 resultado para Calabi-Yau manifold
em KUPS-Datenbank - Universität zu Köln - Kölner UniversitätsPublikationsServer
Filtro por publicador
- KUPS-Datenbank - Universität zu Köln - Kölner UniversitätsPublikationsServer (1)
- ABACUS. Repositorio de Producción Científica - Universidad Europea (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (7)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (9)
- Aquatic Commons (4)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (14)
- Archive of European Integration (6)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (4)
- Aston University Research Archive (23)
- Biblioteca de Teses e Dissertações da USP (4)
- Biblioteca Digital | Sistema Integrado de Documentación | UNCuyo - UNCUYO. UNIVERSIDAD NACIONAL DE CUYO. (1)
- Biblioteca Digital da Câmara dos Deputados (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (9)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (43)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (1)
- Bibloteca do Senado Federal do Brasil (2)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (39)
- Boston University Digital Common (2)
- Brock University, Canada (2)
- Bucknell University Digital Commons - Pensilvania - USA (5)
- Bulgarian Digital Mathematics Library at IMI-BAS (25)
- CaltechTHESIS (8)
- Cambridge University Engineering Department Publications Database (49)
- CentAUR: Central Archive University of Reading - UK (32)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (23)
- Cochin University of Science & Technology (CUSAT), India (6)
- Coffee Science - Universidade Federal de Lavras (1)
- Collection Of Biostatistics Research Archive (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (2)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (3)
- Digital Archives@Colby (1)
- Digital Commons - Michigan Tech (2)
- Digital Commons at Florida International University (5)
- Digital Peer Publishing (4)
- DigitalCommons@The Texas Medical Center (2)
- DRUM (Digital Repository at the University of Maryland) (4)
- Duke University (10)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (1)
- eScholarship Repository - University of California (6)
- Fachlicher Dokumentenserver Paedagogik/Erziehungswissenschaften (1)
- Glasgow Theses Service (3)
- Greenwich Academic Literature Archive - UK (1)
- Helda - Digital Repository of University of Helsinki (12)
- Indian Institute of Science - Bangalore - Índia (62)
- Institutional Repository of Leibniz University Hannover (1)
- Instituto Politécnico do Porto, Portugal (8)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (3)
- Massachusetts Institute of Technology (4)
- National Center for Biotechnology Information - NCBI (9)
- Nottingham eTheses (1)
- QSpace: Queen's University - Canada (3)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (40)
- Queensland University of Technology - ePrints Archive (59)
- Repositório Científico da Universidade de Évora - Portugal (2)
- Repositório digital da Fundação Getúlio Vargas - FGV (5)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (2)
- Repositório Institucional da Universidade de Aveiro - Portugal (3)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (82)
- Repositorio Institucional Universidad EAFIT - Medelin - Colombia (2)
- Research Open Access Repository of the University of East London. (1)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (1)
- Universidad de Alicante (2)
- Universidad del Rosario, Colombia (9)
- Universidad Politécnica de Madrid (16)
- Universidad Politécnica Salesiana Ecuador (1)
- Universidade Complutense de Madrid (6)
- Universidade dos Açores - Portugal (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (2)
- Universitat de Girona, Spain (3)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (9)
- Université de Lausanne, Switzerland (1)
- Université de Montréal, Canada (14)
- University of Michigan (8)
- University of Queensland eSpace - Australia (12)
- University of Washington (2)
- WestminsterResearch - UK (3)
Resumo:
The quotient of a finite-dimensional Euclidean space by a finite linear group inherits different structures from the initial space, e.g. a topology, a metric and a piecewise linear structure. The question when such a quotient is a manifold leads to the study of finite groups generated by reflections and rotations, i.e. by orthogonal transformations whose fixed point subspace has codimension one or two. We classify such groups and thereby complete earlier results by M. A. Mikhaîlova from the 70s and 80s. Moreover, we show that a finite group is generated by reflections and) rotations if and only if the corresponding quotient is a Lipschitz-, or equivalently, a piecewise linear manifold (with boundary). For the proof of this statement we show in addition that each piecewise linear manifold of dimension up to four on which a finite group acts by piecewise linear homeomorphisms admits a compatible smooth structure with respect to which the group acts smoothly. This solves a challenge by Thurston and confirms a conjecture by Kwasik and Lee. In the topological category a counterexample to the above mentioned characterization is given by the binary icosahedral group. We show that this is the only counterexample up to products. In particular, we answer the question by Davis of when the underlying space of an orbifold is a topological manifold. As a corollary of our results we generalize a fixed point theorem by Steinberg on unitary reflection groups to finite groups generated by reflections and rotations. As an application thereof we answer a question by Petrunin on quotients of spheres.