2 resultados para C elegans

em KUPS-Datenbank - Universität zu Köln - Kölner UniversitätsPublikationsServer


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Since Altmann recognized ubiquitously distributed "bioblasts" in 1890, understanding of mitochondria has evolved from "elementary organisms" living inside cells and carrying out vital functions, over the Harman's "free radical theory" in 1956, to one of the driving forces of aging and cause of multiple associated diseases impacting society today. While a tremendous amount of work has contributed to the understanding of mitochondrial biology in different model organisms, the precise molecular mechanisms of basic mitochondrial function have yet to be deciphered. By employing an RNA interference mediated screen in Caenorhabditis elegans, we identified two transcription factors: SPTF-3, a member of Sp1 family, and an uncharacterized, nematode specific W04D2.4. We propose that both proteins modulate expression of many genes with regard to mitochondrial function including mitochondrial single-stranded binding protein encoded by mtss-1, whose promoter was used as transcriptional reporter in the screen. Further, RNA sequencing data indicate that W04D2.4 indirectly regulates expression of mitochondrial DNA via control of genes functionally related to mitochondrial replication and translation machineries. We also demonstrate that from all interventions targeting cytosolic translation, MTSS-1 levels are elevated only upon knockdown of genes encoding cytosolic ribosomal proteins. Reduction of ribosomes leads to increased sptf-3 translation, most likely in an internal ribosome entry side (IRES) mediated manner, eventually inducing mtss-1 expression. Moreover, we identify a novel role for SPTF-3 in the regulation of mitochondrial unfolded stress response (UPRmt) activation, but not endoplasmatic reticulum or oxidative stress responses. Taken together, this study identifies two transcription factors previously not associated with mitochondrial biogenesis and UPRmt in C. elegans, establishing a basis for further investigation of mito-nuclear interactions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Oogenesis is a prerequisite for embryogenesis in Metazoa. During both biological processes important decisions must be made to form the embryo and hence ensure the next generation: (1) Maternal gene products (mRNAs, proteins and nutrients) must be supplied to the embryo. (2) Polarity must be established and axes must be specified. While incorporation of maternal gene products occurs during oogenesis, the time point of polarity establishment and axis specification varies among species, as it is accomplished either prior, during, or after fertilisation. But not only the time point when these events take place varies among species but also the underlying mechanisms by which they are triggered. For the nematode model Caenorhabditis elegans the underlying pathways and gene regulatory networks (GRNs) are well understood. It is known that there the sperm entry point initiates a primary polarity in the 1-celled egg and with it the establishment of the anteroposterior axis. However, studies of other nematodes demonstrated that polarity establishment can be independent of sperm entry (Goldstein et al., 1998; Lahl et al., 2006) and that cleavage patterns, symmetry formation and cell specification also differ from C. elegans. In contrast to the studied Chromadorea (more derived nematodes including C. elegans), embryos of some marine Enoplea (more basal representatives) even show no discernible early polarity and blastomeres can adopt variable cell fates (Voronov and Panchin 1998). The underlying pathways controlling the obviously variant embryonic processes in non-Caenorhabditis nematodes are essentially unknown. In this thesis I addressed this issue by performing a detailed unbiased comparative transcriptome analysis based on microarrays and RNA sequencing of selected developmental stages in a variety of nematodes from different phylogenetic branches with C. elegans as a reference system and a nematomorph as an outgroup representative. In addition, I made use of available genomic data to determine the presence or absence of genes for which no expression had been detected. In particular, I focussed on components of selected pathways or GRNs which are known to play essential roles during C. elegans development and/or other invertebrate or vertebrate model systems. Oogenesis must be regulated differently in non-Caenorhabditis nematodes, as crucial controlling components of Wnt and sex determination signaling are absent in these species. In this respect, I identified female-specific expression of potential polarity associated genes during gonad development and oogenesis in the Enoplean nematode Romanomermis culicivorax. I could show that known downstream components of the polarity complexes PAR-3/-6/PKC-3 and PAR-1/-2 are absent in non-Caenorhabditis species. Even PAR-2 as part of the polarity complex does not exist in these nematodes. Instead, transcriptomes of nematodes (including C. elegans), show expression of other polarity-associated complexes such as the Lgl (Lethal giant larvae) complex. This result could pose an alternative route for nematodes and nematomorphs to initiate polarity during early embryogenesis. I could show that crucial pathways of axis specification, such as Wnt and BMP are very different in C. elegans compared to other nematodes. In the former, Wnt signaling, for instance, is mediated by four paralogous beta-catenins, while other Chromadorea have fewer and Enoplea only one beta-catenin. The transcriptomes of R. culicivorax and the nematomorph show that regulators of BMP (e.g. Chordin), are specifically expressed during early embryogenesis only in Enoplea and the close outgroup of nematomorphs. In conclusion, my results demonstrate that the molecular machinery controlling oogenesis and embryogenesis in nematodes is unexpectedly variable and C. elegans cannot be taken as a general model for nematode development. Under this perspective, Enoplean nematodes show more similarities with outgroups than with C. elegans. It appears that certain pathway components were lost or gained during evolution and others adopted new functions. Based on my findings I can conjecture, which pathway components may be ancestral and which were newly acquired in the course of nematode evolution.