2 resultados para 010503 Mathematical Aspects of Classical Mechanics, Quantum Mechanics and Quantum Information Theory

em KUPS-Datenbank - Universität zu Köln - Kölner UniversitätsPublikationsServer


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This purely theoretical thesis covers aspects of two contemporary research fields: the non-equilibrium dynamics in quantum systems and the electronic properties of three-dimensional topological insulators. In the first part we investigate the non-equilibrium dynamics in closed quantum systems. Thanks to recent technologies, especially from the field of ultracold quantum gases, it is possible to realize such systems in the laboratory. The focus is on the influence of hydrodynamic slow modes on the thermalization process. Generic systems in equilibrium, either classical or quantum, in equilibrium are described by thermodynamics. This is characterized by an ensemble of maximal entropy, but constrained by macroscopically conserved quantities. We will show that these conservation laws slow down thermalization and the final equilibrium state can be approached only algebraically in time. When the conservation laws are violated thermalization takes place exponential in time. In a different study we calculate probability distributions of projective quantum measurements. Newly developed quantum microscopes provide the opportunity to realize new measurement protocols which go far beyond the conventional measurements of correlation functions. The second part of this thesis is dedicated to a new class of materials known as three-dimensional topological insulators. Also here new experimental techniques have made it possible to fabricate these materials to a high enough quality that their topological nature is revealed. However, their transport properties are not fully understood yet. Motivated by unusual experimental results in the optical conductivity we have investigated the formation and thermal destruction of spatially localized electron- and hole-doped regions. These are caused by charged impurities which are introduced into the material in order to make the bulk insulating. Our theoretical results are in agreement with the experiment and can explain the results semi-quantitatively. Furthermore, we study emergent lengthscales in the bulk as well as close to the conducting surface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis we consider algebro-geometric aspects of the Classical Yang-Baxter Equation and the Generalised Classical Yang-Baxter Equation. In chapter one we present a method to construct solutions of the Generalised Classical Yang-Baxter Equation starting with certain sheaves of Lie algebras on algebraic curves. Furthermore we discuss a criterion to check unitarity of such solutions. In chapter two we consider the special class of solutions coming from sheaves of traceless endomorphisms of simple vector bundles on the nodal cubic curve. These solutions are quasi-trigonometric and we describe how they fit into the classification scheme of such solutions. Moreover, we describe a concrete formula for these solutions. In the third and final chapter we show that any unitary, rational solution of the Classical Yang-Baxter Equation can be obtained via the method of chapter one applied to a sheaf of Lie algebras on the cuspidal cubic curve.