1 resultado para Industry analysis
em Projetos e Dissertações em Sistemas de Informação e Gestão do Conhecimento
Filtro por publicador
- Repository Napier (3)
- Aberdeen University (2)
- Academic Archive On-line (Jönköping University; Sweden) (1)
- Academic Research Repository at Institute of Developing Economies (21)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (12)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (2)
- Aquatic Commons (14)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (3)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (1)
- Archive of European Integration (4)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (2)
- Aston University Research Archive (79)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (11)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (7)
- Bioline International (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (9)
- Brock University, Canada (8)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- CaltechTHESIS (1)
- Cambridge University Engineering Department Publications Database (22)
- CentAUR: Central Archive University of Reading - UK (28)
- Central European University - Research Support Scheme (1)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (2)
- Cochin University of Science & Technology (CUSAT), India (22)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (11)
- CORA - Cork Open Research Archive - University College Cork - Ireland (4)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (6)
- Dalarna University College Electronic Archive (3)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- Digital Archives@Colby (1)
- Digital Commons - Michigan Tech (2)
- Digital Commons at Florida International University (37)
- Digital Repository at Iowa State University (1)
- DigitalCommons@The Texas Medical Center (4)
- DigitalCommons@University of Nebraska - Lincoln (1)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (4)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (9)
- Fachlicher Dokumentenserver Paedagogik/Erziehungswissenschaften (1)
- Glasgow Theses Service (1)
- Greenwich Academic Literature Archive - UK (2)
- Helda - Digital Repository of University of Helsinki (6)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Indian Institute of Science - Bangalore - Índia (14)
- Instituto Nacional de Saúde de Portugal (1)
- Instituto Politécnico de Bragança (1)
- Instituto Politécnico do Porto, Portugal (8)
- Instituto Superior de Psicologia Aplicada - Lisboa (2)
- Memorial University Research Repository (1)
- Open University Netherlands (2)
- Portal de Revistas Científicas Complutenses - Espanha (9)
- Projetos e Dissertações em Sistemas de Informação e Gestão do Conhecimento (1)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (28)
- Queensland University of Technology - ePrints Archive (156)
- RDBU - Repositório Digital da Biblioteca da Unisinos (1)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (1)
- Repositorio de la Universidad de Cuenca (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (27)
- Repositório Institucional da Universidade de Aveiro - Portugal (2)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (66)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (19)
- SAPIENTIA - Universidade do Algarve - Portugal (2)
- The Scholarly Commons | School of Hotel Administration; Cornell University Research (2)
- Universidad de Alicante (8)
- Universidad del Rosario, Colombia (4)
- Universidad Politécnica de Madrid (20)
- Universidade Complutense de Madrid (1)
- Universidade Federal do Pará (2)
- Universitat de Girona, Spain (1)
- Université de Montréal (1)
- Université de Montréal, Canada (5)
- University of Canberra Research Repository - Australia (1)
- University of Connecticut - USA (3)
- University of Michigan (70)
- University of Queensland eSpace - Australia (23)
- University of Washington (7)
- WestminsterResearch - UK (5)
- Worcester Research and Publications - Worcester Research and Publications - UK (1)
Resumo:
According to law number 12.715/2012, Brazilian government instituted guidelines for a program named Inovar-Auto. In this context, energy efficiency is a survival requirement for Brazilian automotive industry from September 2016. As proposed by law, energy efficiency is not going to be calculated by models only. It is going to be calculated by the whole universe of new vehicles registered. In this scenario, the composition of vehicles sold in market will be a key factor on profits of each automaker. Energy efficiency and its consequences should be taken into consideration in all of its aspects. In this scenario, emerges the following question: which is the efficiency curve of one automaker for long term, allowing them to adequate to rules, keep balancing on investment in technologies, increasing energy efficiency without affecting competitiveness of product lineup? Among several variables to be considered, one can highlight the analysis of manufacturing costs, customer value perception and market share, which characterizes this problem as a multi-criteria decision-making. To tackle the energy efficiency problem required by legislation, this paper proposes a framework of multi-criteria decision-making. The proposed framework combines Delphi group and Analytic Hierarchy Process to identify suitable alternatives for automakers to incorporate in main Brazilian vehicle segments. A forecast model based on artificial neural networks was used to estimate vehicle sales demand to validate expected results. This approach is demonstrated with a real case study using public vehicles sales data of Brazilian automakers and public energy efficiency data.