3 resultados para termografia infravermelho
em Repositorio Institucional da UFLA (RIUFLA)
Resumo:
The objective of this study was to evaluate the potential of near infrared spectroscopy (NIRS) associated with multivariate statistics to distinguish coal produced from wood of planted and native forests. Timber forest species from the C errado (Cedrela sp., Aspidosperma sp., Jacaranda sp. and unknown species) and Eucalyptus clones from forestry companies (Vallourec and Cenibra) were carbonized in the final temperatures of 300, 500 and 700°C. In each heat treatment were carbonized 15 specimens of each vegetal material totaling 270 samples (3 treatments x 15 reps x 6 materials) produced in 18 carbonization (3 treatments x 6 materials). The acquisition of the spectra of coals in the near infrared using a spectrometer was performed. Principal Component Analysis (PCA) and Partial Least Squares Regression (PLS-R) were carried out in the spectra. NIR Spectroscopy associated with PCA was not able to differentiate charcoals produced from native and planted woods when utilizing all carbonized samples at different temperatures in the same analysis; The PCA of all charcoals was able to distinguish the samples depending on temperature in which they were carbonized. However, the separation of native and planted charcoal was possible when the samples were analyzed separately by final temperature. The prediction of native or planted classes by PLS-R presented better performance for samples carbonized at 300°C followed by those at 500°C, 700°C and for all together.
Resumo:
Seeking alternatives for the total or partial substitution of synthetic fibers for natural fibers, with reinforcement in polymeric materials, this work was conducted with the objective of evaluating the treatment with corona discharge on the adherence of juta fibers with resin. The fibers were exposed to corona discharge for 1, 5, 10 and 15 minutes, as well as after treatment with hot water, molding composites fiber-reinforced with filaments treated for 10 and 15 minutes, and without the treatment. The chemical structures were evaluated by spectrometry in the region of Fourier transform infrared with attenuated total reflection (FTIR/ATR), observing the formation of a new band and the increase in the absorption of groupings with oxygen. The thermal analyses, such as thermogravimetry (TG) and differential scanning calorimetry (DSC) revealed the degradation of cellulose, hemicellulose and lignin. The microstructural characterization by scanning electron microscopy (SEM) showed changes in the surface of the fiber, such as roughness, superficial depressions, surface degradation and cavity formation. The adhesion of the fibers was evaluated by the pullout test, allowing us to verify the increase in adhesion strength after treatment with corona discharge. In conclusion, the treatment with corona discharge changes the surface of the juta fibers, resulting in better adherence with the resin.
Resumo:
This work presents a study on the production of biodiesel by esterification reaction of oleic acid with methanol using batch reactor and different catalysts based on CeO2 and WO3 and HZSM-5. Acid treatment was performed in order to increase the catalytic activity. Different characterization techniques were performed, among them X-ray diffraction (XRD), Thermogravimetric analysis TGA/DTA, Spectroscopy in the Region in Fourier Transform Infrared (FTIR) and X-ray fluorescence (XRF). The effects of independent variables: temperature, molar ratio of oil: alcohol and the amount of catalyst and their interactions on the dependent variable (conversion of oleic acid to the corresponding ester). Overall, through the results obtained in the characterization was observed that the applied treatments were efficient, however the XRF technique, indicated that tungsten oxide leaching could occur during the preparation of the materials. The treatments performed on HZSM-5 caused no significant changes in the structure indicating that the zeolite was quite resistant to the treatments used. It was evaluated using complete 23 factorial design. For the catalysts investigated, the best reaction conditions were obtained when using higher levels of the independent variables temperature and amount of catalyst. However, for the variable molar ratio the lowest level showed significant yields for most of the synthesized catalyst, obtaining maximum conversion to the OC (67.97%), OW (74.37%), HZSM-5 (61.16%) OC-OW 1 (75.93%), OC-OW 2 (82.57%), OC-OW 3 (79.15%), S/OC-OW 1 (86.90%), S/OC-OW 2 (91.04%), S/OC-OW 3 (88.60%), S/OC-OW/H 1 (92.34%), S/OC-OW/H 2 (100%) and S/OC-OW/H 3 (98.16%). According to the experimental design, the temperature has the biggest influence on the reaction variable for all the synthesized catalysts. Among the catalysts investigated S/OC-OW/H 2 e S/OC-OW/H 3 were more effective. Reuse tests showed that the catalyst activity decreased after each cycle, indicating that the regeneration process was effective. The leaching test indicated that the catalysts are heterogeneous in the evaluated operating range. The catalysts investigated showed themselves promising for the production of biodiesel.