3 resultados para soil carbon determination

em Repositorio Institucional da UFLA (RIUFLA)


Relevância:

40.00% 40.00%

Publicador:

Resumo:

This work has been carried out in order to determine the copper content in sugar cane spirit samples from the south of Minas Gerais, using a carbon paste electrode modified with ascorbic acid and carbon nanotubes using the square wave voltammetry technique. The following parameters were studied: Ed (deposit potencial). Td (deposit time), f (frequency), A (amplitude) and ΔEs (increment scanning). The analytical curve was built in an interval from 0.5 to 12 mg L-1 and a coefficient of linear correlation of 0.997 Three sugar cane spirit samples were analysed, which presented copper content ranging from 0.29 to 1.59 mg L-1.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A new voltammetric method for the determination of Delta(9)-tetrahydrocannabinol (Delta(9)-THC) is described. The voltammetric experiments were accomplished in N-N dimethylformamide/water (9: 1, v/v), using tetrabutylammonium tetrafluoroborate (TBATFB) 0.1 mol/L as supporting electrolyte and a glassy carbon disk electrode as the working electrode. The anodic peak current was observed at 0.0 V (vs. Ag/AgCl) after a 30 s pre-concentration step under an applied potential of -1.2 V (vs. Ag/AgCl). A linear dependence of Delta(9)-THC detection was obtained in the concentration range 2.4-11.3 ng/mL, with a linear correlation coefficient of 0.999 and a detection limit of 0.34 ng/mL. The voltammetric method was used to measure the content of Delta(9)-THC in samples (hemp and hashish) confiscated by the police. The elimination of chemical interferences from the samples was promptly achieved through prior purification using the TLC technique, by employing methanol/water (4: 1, v/v) as the mobile phase. The results showed excellent correlation with results attained by HPLC.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We have developed an eletroanalytical method that employs Cu2+ solutions to determine arsenic in sugarcane brandy using an electrode consisting of carbon paste modified with carbon nanotubes (CNTPE) and polymeric resins. We used linear sweep (LSV) and differential-pulse (DPV) voltammetry with cathodic stripping for CNTPE containing mineral oil or silicone as binder. The analytical curves were linear from 30 to 110 μg L−1 and from 10 to 110 μg L−1 for LSV and DPV, respectively. The limits of detection (L.O.D.) and quantification (L.O.Q.) of CNTPE were 10.3 and 34.5 μg L−1 for mineral oil and 3.4 and 11.2 μg L−1 for silicone. We applied this method to determine arsenic in five commercial sugarcane brandy samples. The results agreed well with those obtained by hydride generation combined with atomic absorption spectrometry (HG AAS).