3 resultados para eficiência de absorção
em Repositorio Institucional da UFLA (RIUFLA)
Resumo:
The objective of this study was to evaluate the effect of different sources and doses of copper (Cu) applied to leaves on growth and nutrition of coffee seedlings. The treatments consisted of combinations of two Cu sources (Cupric Sulfate Ammonium - CSA and Copper Sulfate - CS) and four Cu doses (0, 250, 500 and 1000 g ha-1). The sources of Cu in different doses were dissolved in water, calculated for the application volume of 400 L ha-1. The doses were divided in 3 applications at 20 days. The Cu content and concentration in the leaf, stem, and root in were measured. The dry matter of the leaf, stem, root and total and the utilization, absorption and translocation efficiency, in coffee seedlings were evaluated. In general the Cu content and concentration were obtained for the CS at doses of 250, 500 and 1000 g ha-1 Cu. The maximum increase of total dry matter was 48 and 51 g to CSA and CS, when applied 534 and 668 g ha-1, respectively. The highest utilization and absorption efficiency was found to CSA and CS, respectively. The translocation efficiency was similar for both sources.
Resumo:
The HPLC technique with UV-Vis detection was employed in the analysis of cocaine content in apprehended samples of cocaine and crack. A peak signal for cocaine was obtained in 3.5 minutes run by using acetonitrile/water (95:5v/v) as a mobile phase. Optimized spectrophotometric signal was obtained at a wavelength of 224 nm. The analytical curve from 1.0 to 40.0 ppm of cocaine was obtained, showing a linear correlation coefficient of 0.9989, with detection and quantification limits of 0.75 ppm and 3.78 ppm, respectively. This methodology was employed at the dosage of confiscated samples of cocaine and crack in the Scientific Police Laboratory of Ribeirão Preto-SP city.
Resumo:
Nitrogen (N) is the most required nutrient for corn plants and, in order to supply this demand in highly productive crops, mineral fertilizers are used, especially urea. The disadvantage of urea is the loss of N-NH3 to atmosphere. To reverse this situation, some technologies have been developed, such as nitrification and urease inhibitors, which are used as additives to urea. This work aimed at evaluating the agronomic efficiency of urea stabilized with urease and nitrification inhibitors applied to cover the 2013/2014 corn crop. We evaluated 11 nitrogen fertilizer applied in coverage: urea + PA (41.6% N, 3% Cu); urea + PA (41.6% N, 1.5% Cu); urea + PA (41.6% N, 3% Zn); urea + PA (41.6% N, 1.5% Zn); urea + PA (41.6% N, 0.34% Cu, 0.94% B); urea + PA (41.6% N, 0.25% Cu, 0.68% B); urea + PA (41.6% N); urea (44.3% N, 0.15% Cu, 0.4% B); urea (43% N, 0.1% Cu, 0.3% B, 0.05% Mo); pearled urea (46% N); urea + 0,8% DMPP (45% N) and the control, which did not receive nitrogen topdressing. The evaluations were: Nitrogen losses through volatilization, content and accumulation of N, boron (B), copper (Cu) and zinc (Zn) to the dry matter of aerial parts, grains, and in straw and grain productivity. Fertilizers stabilized with urease and nitrification inhibitors did not reduce the volatilization of ammonia volatilization, when compared to pearled urea. Urea with 0.8% of DMPP nitrification inhibitor (3,4-dimethylpyrazole phosphate) provided higher loss by volatilization, lower productivity and agronomic efficiency compared to pearled urea. The coating of urea with Cu, B and Zn did not increase the accumulation of these nutrients in grains and MSPA plants. The use of fertilizers stabilized and coated with micronutrients did not increase the productivity and agronomic efficiency compared to conventional urea.