4 resultados para adubação nitrogenada e potássica
em Repositorio Institucional da UFLA (RIUFLA)
Resumo:
A plant’s nutritional balance can influence its resistance to diseases. In order to evaluate the effect of increasing doses of N and K on the yield and severity of the maize white spot, two experiments were installed in the field, one in the city of Ijaci, Minas Gerais, and the other in the city of Sete Lagoas, Minas Gerais. The experimental delimitation was in randomized blocks with 5 x 5 factorial analysis of variance, and four repetitions. The treatments consisted of five doses of N (20; 40; 80; 150; 190 Kg ha-1 of N in the experiments 1 and 2) and five doses of K (15; 30; 60; 120; 180 Kg ha-1 of K in experiment 1 and 8.75; 17.5; 35; 50; 100 Kg ha-1 of K in experiment 2). The susceptible cultivar 30P70 was planted in both experiments. The plot consisted of four rows 5 meters long, with a useful area consisting of two central rows 3 meters each. Evaluations began 43 days after emergence (DAE) in the first experiment and 56 DAE in the second one. There was no significant interaction between doses of N and K and the disease progress. The effect was only observed for N. The K did not influence the yield and the severity of the disease in these experiments. Bigger areas below the severity progress curve of the white spot and better yield were observed with increasing doses of N. Thus, with increasing doses of N, the white spot increased and also did the yield.
Resumo:
With the objective of evaluating the response of baru (Dipteryx alata Vog.) to nutrient limitation and to the different levels of fertilization, seven experiments were conducted. Experiment 1: Nutritional limitation in greenhouse. We employed 12 treatments in a completely randomized design with eight replicates. Experiment 2: Levels of liming and P in greenhouse. The experimental design was completely randomized in a factorial scheme with four levels of liming (V23.2% (natural soil), V45%, V65% and V85%) and four doses of P (0, 100, 300 and 500 mg kg -1 of P). Experiment 3: Doses of N in greenhouse. We used seven treatments (0, 75, 150, 225, 300, 375 and 450 mg kg -1 of N) in a completely randomized design. Experiment 4: Doses of K in greenhouse. We used seven treatments (0, 75, 150, 225, 300, 375 and 450 mg kg -1 ) in a completely randomized design. Experiment 5: Levels of liming under field conditions. We used four treatments (V6.7% (natural soil), V35%, V55% and V75%) in a randomized blocks design. Experiment 6: doses of P under field conditions. We used five treatments (0, 23.67, 53.34, 106.67 and 213.36 kg ha -1 of P 2O5) in a randomized blocks design. Experiment 7: Doses of N under field conditions. We used five treatments (0, 30, 60, 120 and 240 kg ha -1 of N) in Latin square. In greenhouse, the evaluations were conducted at eight months (for experiments 1 and 2) and 12 months (for experiments 3 and 4) after seeding, when the measurements of height and root collar diameter of the seedlings. Subsequently, the plants were harvested and separated into shoot and root system, for weighing and evaluating dry biomass gain. In the field, the evaluations were conducted at six, 12, 18, 24 and 30 months (for experiments 5 and 6) and at six, 12 and 18 months (for experiment 7). In these experiments, we evaluated the survival of the seedlings, height of the plants and diameter of the stem at soil height. The data obtained were submitted to analysis of variance, mean tests and regression analysis. In conclusion, during the phase of seedling formation, the species is little demanding in S and B, negatively responds to liming, positively responds to phosphate fertilization and does not respond to nitrogen and potassium fertilization. In the field, in general, the species does not respond to the application of P or to liming, and is negatively influenced by the application of elevated doses of nitrogen.
Resumo:
Nitrogen (N) is the most required nutrient for corn plants and, in order to supply this demand in highly productive crops, mineral fertilizers are used, especially urea. The disadvantage of urea is the loss of N-NH3 to atmosphere. To reverse this situation, some technologies have been developed, such as nitrification and urease inhibitors, which are used as additives to urea. This work aimed at evaluating the agronomic efficiency of urea stabilized with urease and nitrification inhibitors applied to cover the 2013/2014 corn crop. We evaluated 11 nitrogen fertilizer applied in coverage: urea + PA (41.6% N, 3% Cu); urea + PA (41.6% N, 1.5% Cu); urea + PA (41.6% N, 3% Zn); urea + PA (41.6% N, 1.5% Zn); urea + PA (41.6% N, 0.34% Cu, 0.94% B); urea + PA (41.6% N, 0.25% Cu, 0.68% B); urea + PA (41.6% N); urea (44.3% N, 0.15% Cu, 0.4% B); urea (43% N, 0.1% Cu, 0.3% B, 0.05% Mo); pearled urea (46% N); urea + 0,8% DMPP (45% N) and the control, which did not receive nitrogen topdressing. The evaluations were: Nitrogen losses through volatilization, content and accumulation of N, boron (B), copper (Cu) and zinc (Zn) to the dry matter of aerial parts, grains, and in straw and grain productivity. Fertilizers stabilized with urease and nitrification inhibitors did not reduce the volatilization of ammonia volatilization, when compared to pearled urea. Urea with 0.8% of DMPP nitrification inhibitor (3,4-dimethylpyrazole phosphate) provided higher loss by volatilization, lower productivity and agronomic efficiency compared to pearled urea. The coating of urea with Cu, B and Zn did not increase the accumulation of these nutrients in grains and MSPA plants. The use of fertilizers stabilized and coated with micronutrients did not increase the productivity and agronomic efficiency compared to conventional urea.
Resumo:
Aiming to evaluate the dose and application schedule of foliar Zn-sulfate spraying in growing and yield of Arabic coffee Mundo Novo, a field experiment was set up on Distroferric Red Latosol, at the Experimental Station of the EPAMIG in São Sebastião do Paraíso. The statistical design used was randomized blocks in s 4 x 2 factorial scheme with five replications and a 30-plant plot with six central valid or four applications per agricultural year. Phosphorus and zinc leaf levels were evaluated for eight years and the yields. It was possible to conclude that there is a positive response to the in the leaves. Four low concentrations sprayings promoted higher yields than two high concentrations. The highest yields were achieved with 10.8 and 12.6 kg ha-1 of ZnSO4 and 4 yearly applications, respectively. It is suggested as a critical range for the Zn leaves values between 10 and 28 mg kg-1 and for P/Zn ratio, between 100 and 150. ) was sprayed under 4 concentrations 0; 0.5; 1.0 and 1.5%, two applied on the leaves in terms of yield, and to Zn levels