3 resultados para adubação fosfatada
em Repositorio Institucional da UFLA (RIUFLA)
Resumo:
With the objective of evaluating the response of baru (Dipteryx alata Vog.) to nutrient limitation and to the different levels of fertilization, seven experiments were conducted. Experiment 1: Nutritional limitation in greenhouse. We employed 12 treatments in a completely randomized design with eight replicates. Experiment 2: Levels of liming and P in greenhouse. The experimental design was completely randomized in a factorial scheme with four levels of liming (V23.2% (natural soil), V45%, V65% and V85%) and four doses of P (0, 100, 300 and 500 mg kg -1 of P). Experiment 3: Doses of N in greenhouse. We used seven treatments (0, 75, 150, 225, 300, 375 and 450 mg kg -1 of N) in a completely randomized design. Experiment 4: Doses of K in greenhouse. We used seven treatments (0, 75, 150, 225, 300, 375 and 450 mg kg -1 ) in a completely randomized design. Experiment 5: Levels of liming under field conditions. We used four treatments (V6.7% (natural soil), V35%, V55% and V75%) in a randomized blocks design. Experiment 6: doses of P under field conditions. We used five treatments (0, 23.67, 53.34, 106.67 and 213.36 kg ha -1 of P 2O5) in a randomized blocks design. Experiment 7: Doses of N under field conditions. We used five treatments (0, 30, 60, 120 and 240 kg ha -1 of N) in Latin square. In greenhouse, the evaluations were conducted at eight months (for experiments 1 and 2) and 12 months (for experiments 3 and 4) after seeding, when the measurements of height and root collar diameter of the seedlings. Subsequently, the plants were harvested and separated into shoot and root system, for weighing and evaluating dry biomass gain. In the field, the evaluations were conducted at six, 12, 18, 24 and 30 months (for experiments 5 and 6) and at six, 12 and 18 months (for experiment 7). In these experiments, we evaluated the survival of the seedlings, height of the plants and diameter of the stem at soil height. The data obtained were submitted to analysis of variance, mean tests and regression analysis. In conclusion, during the phase of seedling formation, the species is little demanding in S and B, negatively responds to liming, positively responds to phosphate fertilization and does not respond to nitrogen and potassium fertilization. In the field, in general, the species does not respond to the application of P or to liming, and is negatively influenced by the application of elevated doses of nitrogen.
Resumo:
Phosphate fertilizers are critical for crop production in tropical soils, which are known for having high phosphate-fixing capacity and aluminium saturation, as well as low pH and calcium contents. Fluorine is a component of many phosphate rocks used to make phosphate fertilizers, via a process that generates hexafluorosilicic acid (H2SiF6). While many treatment technologies have been proposed for removal of fluorine in industrial facilities, little attention has been given to a process of neutralizing H2SiF6 with calcium oxide aiming to find out an alternative and sustainable use of a by-product with a great potential for beneficial use in tropical agriculture. This study evaluated the effect of a by-product of phosphoric acid production (fluorite with silicon oxide, hereafter called AgroSiCa) in levels of phosphorus (P), calcium (Ca), silicon (Si), aluminum (Al) and fluorine (F) and some others parameters in soils as on growth of soybean and corn. Experiments were conducted in a greenhouse condition at the Federal University of Lavras (UFLA), Lavras, Minas Gerais, using different types of soils in tropical regions and different doses of AgroSiCa. The application of AgroSiCa resulted in a slight increase in soil pH and significant increases in calcium, phosphorus and silicon in the soil solution and the shoots of corn and soybeans. We also found very low levels of fluoride in all soil leachates. A significant reduction of labile aluminum levels found in all soils after the cultivation of corn and soybeans. In sum, AgroSiCa improved soil properties and contributed to better growth of both cultures. In sum, AgroSiCa improved soil properties and contributed to a better growth of both crops. Our results show that reacting H2SiF6 derived from the wet-process phosphoric acid production with calcium oxide leads to a by-product with potential for agricultural use, especially when applied in highly-weathered soils. Besides providing calcium and silicon to plants, the use of such by-product in soils with high phosphate-fixing capacity and high aluminium saturation delivers additional benefits, since fluoride and silicon can play an important role in improving soil conditions due to the formation of less plant-toxic forms of aluminium, as well as upon decreasing phosphate fixation, thus improving root development and making fertilizer-derived phosphate more available for plant growth.
Resumo:
Aiming to evaluate the dose and application schedule of foliar Zn-sulfate spraying in growing and yield of Arabic coffee Mundo Novo, a field experiment was set up on Distroferric Red Latosol, at the Experimental Station of the EPAMIG in São Sebastião do Paraíso. The statistical design used was randomized blocks in s 4 x 2 factorial scheme with five replications and a 30-plant plot with six central valid or four applications per agricultural year. Phosphorus and zinc leaf levels were evaluated for eight years and the yields. It was possible to conclude that there is a positive response to the in the leaves. Four low concentrations sprayings promoted higher yields than two high concentrations. The highest yields were achieved with 10.8 and 12.6 kg ha-1 of ZnSO4 and 4 yearly applications, respectively. It is suggested as a critical range for the Zn leaves values between 10 and 28 mg kg-1 and for P/Zn ratio, between 100 and 150. ) was sprayed under 4 concentrations 0; 0.5; 1.0 and 1.5%, two applied on the leaves in terms of yield, and to Zn levels