3 resultados para Voltammetric behaviors
em Repositorio Institucional da UFLA (RIUFLA)
Resumo:
The presence of contaminants, such as phosphate, in biodiesel, has several drawbacks for instance: current engines perform poorly, fuel tanks deteriorate, catalytic conversion is damaged, and particles emission is increased. Therefore, biodiesel quality control is extremely important for biodiesel acceptance and commercialization worldwide. In this context, a bare glassy carbon electrode (GCE) and another chemically modified electrode with iron hexacyanoferrate (Prussian Blue – PB) were developed for determination of phosphate in biodiesel. The LODs of 6.44 and 1.19 mg kg−1, and LOQs of 21.43 and 3.97 mg kg−1 were obtained for the bare GCE and the PB-modified GCE, respectively. The methodology was employed for analysis of Brazilian biodiesel samples, and it led to satisfactory results, demonstrating its potential application for biodiesel quality control. Additionally, recovery and interference tests were conducted, which revealed that the developed methods are suitable for analysis of phosphate in biodiesel samples.
Resumo:
A new voltammetric method for the determination of Delta(9)-tetrahydrocannabinol (Delta(9)-THC) is described. The voltammetric experiments were accomplished in N-N dimethylformamide/water (9: 1, v/v), using tetrabutylammonium tetrafluoroborate (TBATFB) 0.1 mol/L as supporting electrolyte and a glassy carbon disk electrode as the working electrode. The anodic peak current was observed at 0.0 V (vs. Ag/AgCl) after a 30 s pre-concentration step under an applied potential of -1.2 V (vs. Ag/AgCl). A linear dependence of Delta(9)-THC detection was obtained in the concentration range 2.4-11.3 ng/mL, with a linear correlation coefficient of 0.999 and a detection limit of 0.34 ng/mL. The voltammetric method was used to measure the content of Delta(9)-THC in samples (hemp and hashish) confiscated by the police. The elimination of chemical interferences from the samples was promptly achieved through prior purification using the TLC technique, by employing methanol/water (4: 1, v/v) as the mobile phase. The results showed excellent correlation with results attained by HPLC.
Resumo:
We have developed an eletroanalytical method that employs Cu2+ solutions to determine arsenic in sugarcane brandy using an electrode consisting of carbon paste modified with carbon nanotubes (CNTPE) and polymeric resins. We used linear sweep (LSV) and differential-pulse (DPV) voltammetry with cathodic stripping for CNTPE containing mineral oil or silicone as binder. The analytical curves were linear from 30 to 110 μg L−1 and from 10 to 110 μg L−1 for LSV and DPV, respectively. The limits of detection (L.O.D.) and quantification (L.O.Q.) of CNTPE were 10.3 and 34.5 μg L−1 for mineral oil and 3.4 and 11.2 μg L−1 for silicone. We applied this method to determine arsenic in five commercial sugarcane brandy samples. The results agreed well with those obtained by hydride generation combined with atomic absorption spectrometry (HG AAS).