2 resultados para Solução do solo, condutividade elétrica

em Repositorio Institucional da UFLA (RIUFLA)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite tobacco being a culture propagated by seeds, there is little information concerning tests that allow the distinction of similar germination lots in different levels of vigor. The diversity of cultivars available in the market, and a few peculiarities of the species, such as uneven maturation of the flowers, fruits and seeds, small size and seed dormancy, are considered obstacles for obtaining lots of tobacco of high physiological potential. Thus, this research was developed with the objective of adapting feasibility and vigor tests for evaluating the physiological potential of tobacco seed lots. We used nine lots of tobacco seeds of cultivar CSC 447 and nine lots of seeds of cultivar BAT 2101, belonging to variety groups Virginia and Burley, respectively. Initially, germination test was conducted to characterize the profile of the lots. For determining the feasibility and vigor of the tobacco seeds, germination tests were conducted in distinct temperatures, controlled emergence conditions, electric conductivity, artificial aging and in tetrazolium. For determining the isoenzymatic marker for seed quality, analyses were conducted with enzymes catalase, esterase, malate dehydrogenase and alcohol dehydrogenase. In conclusion, the emergence tests at 25oC and artificial aging at 41oC for 72 hours, are efficient in discriminating the lots of tobacco seeds in different levels of vigor. The electric conductivity and germination tests in different temperatures have distinct responses in relation to the genotype of the tobacco seeds. The tetrazolium test using the methodology with pre-conditioning in 3.5% sodium hypochlorite solution and subsequent emersion in 1.0% tetrazolium solution for 18 hours is efficient for the quick evaluation of the feasibility of tobacco seeds. The analysis of the profiles of enzymes catalase, esterase, malate dehydrogenase and alcohol dehydrogenase is efficient as markers for tobacco seed quality.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phosphate fertilizers are critical for crop production in tropical soils, which are known for having high phosphate-fixing capacity and aluminium saturation, as well as low pH and calcium contents. Fluorine is a component of many phosphate rocks used to make phosphate fertilizers, via a process that generates hexafluorosilicic acid (H2SiF6). While many treatment technologies have been proposed for removal of fluorine in industrial facilities, little attention has been given to a process of neutralizing H2SiF6 with calcium oxide aiming to find out an alternative and sustainable use of a by-product with a great potential for beneficial use in tropical agriculture. This study evaluated the effect of a by-product of phosphoric acid production (fluorite with silicon oxide, hereafter called AgroSiCa) in levels of phosphorus (P), calcium (Ca), silicon (Si), aluminum (Al) and fluorine (F) and some others parameters in soils as on growth of soybean and corn. Experiments were conducted in a greenhouse condition at the Federal University of Lavras (UFLA), Lavras, Minas Gerais, using different types of soils in tropical regions and different doses of AgroSiCa. The application of AgroSiCa resulted in a slight increase in soil pH and significant increases in calcium, phosphorus and silicon in the soil solution and the shoots of corn and soybeans. We also found very low levels of fluoride in all soil leachates. A significant reduction of labile aluminum levels found in all soils after the cultivation of corn and soybeans. In sum, AgroSiCa improved soil properties and contributed to better growth of both cultures. In sum, AgroSiCa improved soil properties and contributed to a better growth of both crops. Our results show that reacting H2SiF6 derived from the wet-process phosphoric acid production with calcium oxide leads to a by-product with potential for agricultural use, especially when applied in highly-weathered soils. Besides providing calcium and silicon to plants, the use of such by-product in soils with high phosphate-fixing capacity and high aluminium saturation delivers additional benefits, since fluoride and silicon can play an important role in improving soil conditions due to the formation of less plant-toxic forms of aluminium, as well as upon decreasing phosphate fixation, thus improving root development and making fertilizer-derived phosphate more available for plant growth.