2 resultados para Soda cáustica - Ingestão
em Repositorio Institucional da UFLA (RIUFLA)
Resumo:
The aims of this study were to evaluate the potential of the oil extracted from tilapia residues filleting for biodiesel production, select the one that presents the greatest potential for this purpose and characterize the obtained biodiesel to be neutralized or refined and analyzed according to their physicochemical and yield characteristics. For this, the crude heads, carcasses and offal which have undergone physical and chemical analysis and yield were extracted. For this, the crude oil was extracted from the heads, carcasses and guts, which have passed through physicochemical and yield analysis.For the statistical analysis, a completely randomized design was used with 3 treatments (head, carcass and viscera) and 5 replications.It was observed significant differences in the oils (P <0.05) being the viscera oil the one that showed higher yield although it presented the worst values for all evaluated indices. For this reason this oil was selected for further studies. In this new stage of the study the treatments were: neutralized crude oil and viscera refined oil with different volumes of NaOH 16%.It was adopted a completely randomized design, with a 2x3 factorial (types of oil x soda volumes) with 3 replications. The analyzed variables were acid value, saponification index, peroxide value and iodine value. It was also evaluated the performance of all the obtained biodiesel. It can be concluded that: among the filleting residues oil of tilapias, the one which is more suitable for biodiesel production, due to its high yield, was the viscera oil. The use of all stages of refining is indispensable, once the obtained index and the yield were greater in the biodiesel refined oil; the produced biodiesel from tilapia’s viscera oil meets the ANP standards and, therefore, it is adequate for use.
Resumo:
The common bean (Phaseolus vulgaris L.), a staple food in nutritional diet of Brazilians and populations in developing countries, is a nutritionally rich legume with potential for biofortification. Approximately one third of the world population suffers from nutritional deficiencies, being necessary to increase the nutrient content in vegetables, especially iron (Fe), selenium (Se) and zinc (Zn), which are important micronutrients for plants and human health. In this context, three studies were carried out aiming to evaluate the potential of common bean cultivars to biofortification with Fe, Se and Zn, and verify the interaction between these minerals and iron bioavailability, in order to contribute to increased nutritional quality of grains, reducing the micronutrients deficiency and improving human health. In the first study, experiments were conducted in a greenhouse, with ten common bean cultivars in nutrient solution under different treatments with Fe, Se and Zn. The plant growth and the mineral content of the beans were evaluated in addition to verify the influence of polyphenol and phytate levels on Fe bioavailability in grains fortified with Zn and Se. The evaluated beans cultivars have proved promising for simultaneous biofortification with these nutrients without greatly affecting Fe bioavailability. In the second study, the aim was evaluate the interaction between Fe, Se and Zn in cultivars consumed in Brazil or in USA. Gene expression and root microscopy analysis were performed in order to understand the positive effect of Zn supply on the Fe uptake by roots. The expression of genes related to the transport and uptake of Fe and Zn did not clearly explain the influence of Zn in Fe nutrition. The roots microscopy and the evaluation of nutrient solutions used showed that, in the presence of Zn, there was Fe accumulation in epidermis of the roots and not in the vascular system, prone to be precipitated when it goes through the root membrane. In the latest study, a field experiment was conducted to evaluate the effect of Zn fertilization via soil and foliar, in the content and accumulation of Fe and Zn in grains and in the yield of common bean cultivars, in addition to verify the amount of these micronutrients supplied by biofortified beans. The fertilization with Zn did not affect the yield, but provided high levels of this nutrient in grains of the cultivars analyzed, representing 27% of the recommended daily intake of Zn. The higher Fe content in beans, obtained when there was no application of foliar Zn, supplies 56% of the daily requirement of Fe.