2 resultados para Seeds. Seed technology

em Repositorio Institucional da UFLA (RIUFLA)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coffee seeds have limitations regarding to its conservation because of their sensitivity to desiccation and storage behavior. The establishment of a methodology for seed storage is difficult due to its deterioration. Deterioration can enhance the production of reactive oxygen species and cause lethal oxidative damage to plant tissues. The damage caused by harmful levels of free radicals can be softened by the action of endogenous or exogenous antioxidants. Recent research shows new antioxidative protection technologies, being cathodic protection a promising technique with relevant results in other recalcitrant species and even in other living organisms. Thus, the aim of this work was to verify the antioxidant effect of cathodic water in Coffea arabica L. seeds with the purpose of investigating a new technology to improve seed quality. The study was conducted at the Central Seed Laboratory, Department of Agriculture, at the Federal University of Lavras. Coffea arabica L. seeds were used. The study was conducted in two stages, in the first a preliminary analysis of the use of cathodic water was carried out in batches with different levels of quality. In the second it was evaluated the effect of light and of the imbibition period of the seeds in cathodic water. The seeds were immersed in distilled water and in cathodic water for eight distinct soaking periods, in absence and presence of light and then evaluated by physiological tests. It can be concluded that cathodic water can positively influence the physiological performance of the coffee seeds with poor quality, especially when embedded during periods between 4.5 to 7.5 hours in the absence of light.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bacterial fruit blotch of cucurbits (BFB), caused by the seed borne Gramnegative bacterium Acidovorax citrulli is a serious threat to cucurbit industry worldwide. Since late 1980`s after devastating outbreaks in watermelon fields in southern United States, BFB has spread worldwide and has been reported in other cucurbit crops such as melon, pumpkin, cucumber and squash. To date, there is evidence for the existence of at least two genetically and pathogenically distinct populations of A. citrulli. In Brazil, the first report of BFB was in 1991, in a watermelon field in São Paulo. Although widespread in the country, BFB has been a major problem to melon production. More precisely, BFB has caused significant yield losses to melon production in northeastern Brazil, which concentrates > 90% of the country`s melon production. Despite the management efforts and the recent advances in A. citrulli research, BFB is still a continuous threat to the cucurbit industry, including seed producers, growers and transplant nurseries. To better understand the population structure of A. citrulli strains in Brazil, and to provide a basis for the integrated management of BFB, we used pulsed-field gel electrophoresis (PFGE), multilocus sequence analysis (MLSA) of housekeeping and virulence-associated genes and pathogenicity tests on different cucurbit seedlings to characterize a Brazilian population of A. citrulli strains from different hosts and regions. Additionally, we conducted for the first time a comparative analysis of the A. citrulli group I and II population at genomic level and showed that these two groups differ on their genome sizes due to the presence of eight DNA segments, which are present in group II and absent in group I genomes. We also provide the first evidence to suggest that temperature might be a driver in the ecological adaptation of A. citrulli populations under nutrient-rich or -depleted conditions. Finally, in order to improve the routine detection of A. citrulli on melon seedlots, we designed a new primer set that is able to detect the different Brazilian haplotypes, thus minimizing the risk of false-negatives on PCR-based seed health testing.