1 resultado para Sandy Hook Bay
em Repositorio Institucional da UFLA (RIUFLA)
Resumo:
This research aimed to evaluate the wood and charcoal quality of hybrids clone of the crossing C. citriodora with C. torelliana in two different locations for charcoal production. Seven with 3,75 years old clones, planted at country of Itamarandiba – MG, and six 6,42 years old clones, planted in Dionísio – MG, were studied. For wood and charcoal quality analysis, samples were collected along the stem of the trees until the commercial height. Properties study of the wood was done by chemical analysis, basic density, superior heat power, and thermogravimetric analysis. The wood samples were carbonized in laboratory conditions with heating rate of 1.67 0 C.min -1 , starting at 100 0 C until 450 0 C and keeping on this temperature for 30 minutes. It were determined the carbonizations gravimetric yield, all in dry basis. The wood quality was evaluated based on the chemical immediate analysis, relative apparent density, and gross heating value. The experiment was installed according to the completely randomized design, with five repetitions. The collected data were submitted to analysis of variance and, when the evaluated effects were significant by “F” test, was applied the Scott-Knott test at 5% probability for multiple comparisons. For correlation analysis, Pearson correlation coefficient, tested by the "t" test at 5% probability was used. Results showed variability of wood between the genetic materials evaluated in relation to place and plant crossing. The thermal analysis of the wood showed significant variation between clones and it was possible to differentiate two stages of degradation (hemicelluloses and cellulose). The majority of the clones presented satisfactory properties for the charcoal production, while, clone 3, planted in Itamarandiba, obtained the best performance due it have the higher yield and energetic efficiency, thus, achieving the best potential for charcoal production. However, clone 9, planted in Dionísio, was the less indicated for charcoal production since it presented the lowest energetic efficiency, gravimetric yield, and densities.