6 resultados para Potencial enológico de clones
em Repositorio Institucional da UFLA (RIUFLA)
Resumo:
The barks generated from the wood processing industries are wastes generated in significant quantities, becoming interesting to have basic studies of their anatomical and chemical properties in order to make better use of this material. This study aimed to carry out anatomical studies, chemical and tannins from the barks of commercial clones of Eucalyptus. For this, permanent histological slides for anatomical characterization and percentage of cellular elements were prepared; and cellular elements were dissociated for biometry of the elements. The analyses were related to chemical extractives, ash, lignin, suberin, sugars, phenols, tannins, flavonoids and antioxidant activity of the extracts. The tannins were extracted in pure water and with water mixed with sodium sulfite, and were subsequently evaluated the properties by FT-IR. It was verified by the anatomical characterization and chemical quantification, the similarity between the clones. Regarding the biometrics of cellular elements, statistically significant differences were not observed for the following parameters: length and diameter of sieve tube, axial parenchyma diameter, and rays hight. The yield of condensed tannins and Stiasny index for studied clones are low, showing the infeasibility of using bark for the extraction of tannins to produce adhesives, however tannins and other bioactive phenolic compounds can be used in the pharmaceutical and cosmetics sectors due to its antioxidant potential. The spectrum of tannins is the same as the one found the literature. Due to the high yield of verified sugar, (around 46,68%) sugars are potencial products, with a high yield of glucose , it is interesting for application in biorefinery.
Resumo:
The objective of this study was to evaluate the potential of near infrared spectroscopy (NIRS) associated with multivariate statistics to distinguish coal produced from wood of planted and native forests. Timber forest species from the C errado (Cedrela sp., Aspidosperma sp., Jacaranda sp. and unknown species) and Eucalyptus clones from forestry companies (Vallourec and Cenibra) were carbonized in the final temperatures of 300, 500 and 700°C. In each heat treatment were carbonized 15 specimens of each vegetal material totaling 270 samples (3 treatments x 15 reps x 6 materials) produced in 18 carbonization (3 treatments x 6 materials). The acquisition of the spectra of coals in the near infrared using a spectrometer was performed. Principal Component Analysis (PCA) and Partial Least Squares Regression (PLS-R) were carried out in the spectra. NIR Spectroscopy associated with PCA was not able to differentiate charcoals produced from native and planted woods when utilizing all carbonized samples at different temperatures in the same analysis; The PCA of all charcoals was able to distinguish the samples depending on temperature in which they were carbonized. However, the separation of native and planted charcoal was possible when the samples were analyzed separately by final temperature. The prediction of native or planted classes by PLS-R presented better performance for samples carbonized at 300°C followed by those at 500°C, 700°C and for all together.
Resumo:
This research aimed to evaluate the wood and charcoal quality of hybrids clone of the crossing C. citriodora with C. torelliana in two different locations for charcoal production. Seven with 3,75 years old clones, planted at country of Itamarandiba – MG, and six 6,42 years old clones, planted in Dionísio – MG, were studied. For wood and charcoal quality analysis, samples were collected along the stem of the trees until the commercial height. Properties study of the wood was done by chemical analysis, basic density, superior heat power, and thermogravimetric analysis. The wood samples were carbonized in laboratory conditions with heating rate of 1.67 0 C.min -1 , starting at 100 0 C until 450 0 C and keeping on this temperature for 30 minutes. It were determined the carbonizations gravimetric yield, all in dry basis. The wood quality was evaluated based on the chemical immediate analysis, relative apparent density, and gross heating value. The experiment was installed according to the completely randomized design, with five repetitions. The collected data were submitted to analysis of variance and, when the evaluated effects were significant by “F” test, was applied the Scott-Knott test at 5% probability for multiple comparisons. For correlation analysis, Pearson correlation coefficient, tested by the "t" test at 5% probability was used. Results showed variability of wood between the genetic materials evaluated in relation to place and plant crossing. The thermal analysis of the wood showed significant variation between clones and it was possible to differentiate two stages of degradation (hemicelluloses and cellulose). The majority of the clones presented satisfactory properties for the charcoal production, while, clone 3, planted in Itamarandiba, obtained the best performance due it have the higher yield and energetic efficiency, thus, achieving the best potential for charcoal production. However, clone 9, planted in Dionísio, was the less indicated for charcoal production since it presented the lowest energetic efficiency, gravimetric yield, and densities.
Resumo:
Phosphate fertilizers are critical for crop production in tropical soils, which are known for having high phosphate-fixing capacity and aluminium saturation, as well as low pH and calcium contents. Fluorine is a component of many phosphate rocks used to make phosphate fertilizers, via a process that generates hexafluorosilicic acid (H2SiF6). While many treatment technologies have been proposed for removal of fluorine in industrial facilities, little attention has been given to a process of neutralizing H2SiF6 with calcium oxide aiming to find out an alternative and sustainable use of a by-product with a great potential for beneficial use in tropical agriculture. This study evaluated the effect of a by-product of phosphoric acid production (fluorite with silicon oxide, hereafter called AgroSiCa) in levels of phosphorus (P), calcium (Ca), silicon (Si), aluminum (Al) and fluorine (F) and some others parameters in soils as on growth of soybean and corn. Experiments were conducted in a greenhouse condition at the Federal University of Lavras (UFLA), Lavras, Minas Gerais, using different types of soils in tropical regions and different doses of AgroSiCa. The application of AgroSiCa resulted in a slight increase in soil pH and significant increases in calcium, phosphorus and silicon in the soil solution and the shoots of corn and soybeans. We also found very low levels of fluoride in all soil leachates. A significant reduction of labile aluminum levels found in all soils after the cultivation of corn and soybeans. In sum, AgroSiCa improved soil properties and contributed to better growth of both cultures. In sum, AgroSiCa improved soil properties and contributed to a better growth of both crops. Our results show that reacting H2SiF6 derived from the wet-process phosphoric acid production with calcium oxide leads to a by-product with potential for agricultural use, especially when applied in highly-weathered soils. Besides providing calcium and silicon to plants, the use of such by-product in soils with high phosphate-fixing capacity and high aluminium saturation delivers additional benefits, since fluoride and silicon can play an important role in improving soil conditions due to the formation of less plant-toxic forms of aluminium, as well as upon decreasing phosphate fixation, thus improving root development and making fertilizer-derived phosphate more available for plant growth.
Resumo:
Eryngium foetidum L., Eryngium cf. campestre and Coriandrum sativum L. are Apiaceae family vegetable appreciated due to its peculiar flavor and consumed mainly in the north and northeast of Brazil. The vegetables are rich in protein, vitamins, fiber, minerals, total phenolics and other essential bioactives for a balanced health. Nevertheless, many vegetables are falling into disuse by the population, instead of processed foods. The rescue consumption of these species is very important, aiming at their nutritional, therapeutic and antioxidant benefits. In this study, was quantified the levels of total phenolic, flavonoids and dihidroflavonoides by molecular absorption spectrophotometry in the ultraviolet. The total antioxidant capacity was also evaluated using five methodologies of in vitro assays: test Total Antioxidant Capacity (TAC), scavenging of DPPH and ABTS radical, Power Reducing and Power Chelating. It was also evaluated the power inhibitor of α-amylase and lipoxygenase extracts. All species showed significant levels of total phenolics, flavonoids and dihidroflavonoides in its composition. All treatments showed antioxidant activity of 50% except the sheets of E. cf. campestre, C. sativum and bracts of E. foetidum in DPPH and bracts of E. foetidum in ABTS. All treatments also exhibited 50% inhibition activity of the enzyme lipoxygenase.In α-amylase only the leaves of E. cf. campestre and C. sativum showed IC50. It was evaluate the phytochemical composition, aiming to meet the nutritional potential of Apiaceae family vegetables, called unconventional: Eryngium foetidum L., Eryngium cf. campestre; and conventional: Coriandrum sativum L. At the centesimal composition analysis Coriandrum sativum L. presented the highest levels of protein. The leaves of Eryngium foetidum L. exhibited higher values than other species in dietary fiber, while Eryngium cf. campestre detach with superior results in lipids. About the analyzed minerals, the leaves of Eryngium cf. campestre expressed results superior to the other in N, Ca, Mg, S and Cu. The amount of iron highlighted in sheets of E. foetidum, whereas P, K, Mn, Zn and B were most significant on leaves of C. sativum. It was concluded that the levels of total phenolic compounds found in these vegetables, characterize them for its high potential in the antioxidant and inhibition of lipoxygenase and α-amylase enzymes. Their protein and mineral levels classify them as species that can be used as a nutritional source in the preparation of other foods and may their regular consumption bring benefit to human health.
Resumo:
Despite tobacco being a culture propagated by seeds, there is little information concerning tests that allow the distinction of similar germination lots in different levels of vigor. The diversity of cultivars available in the market, and a few peculiarities of the species, such as uneven maturation of the flowers, fruits and seeds, small size and seed dormancy, are considered obstacles for obtaining lots of tobacco of high physiological potential. Thus, this research was developed with the objective of adapting feasibility and vigor tests for evaluating the physiological potential of tobacco seed lots. We used nine lots of tobacco seeds of cultivar CSC 447 and nine lots of seeds of cultivar BAT 2101, belonging to variety groups Virginia and Burley, respectively. Initially, germination test was conducted to characterize the profile of the lots. For determining the feasibility and vigor of the tobacco seeds, germination tests were conducted in distinct temperatures, controlled emergence conditions, electric conductivity, artificial aging and in tetrazolium. For determining the isoenzymatic marker for seed quality, analyses were conducted with enzymes catalase, esterase, malate dehydrogenase and alcohol dehydrogenase. In conclusion, the emergence tests at 25oC and artificial aging at 41oC for 72 hours, are efficient in discriminating the lots of tobacco seeds in different levels of vigor. The electric conductivity and germination tests in different temperatures have distinct responses in relation to the genotype of the tobacco seeds. The tetrazolium test using the methodology with pre-conditioning in 3.5% sodium hypochlorite solution and subsequent emersion in 1.0% tetrazolium solution for 18 hours is efficient for the quick evaluation of the feasibility of tobacco seeds. The analysis of the profiles of enzymes catalase, esterase, malate dehydrogenase and alcohol dehydrogenase is efficient as markers for tobacco seed quality.