2 resultados para Plant nutrients
em Repositorio Institucional da UFLA (RIUFLA)
Resumo:
Knowing the structure and distribution of nutrients in plant tissues can clarify some mechanisms of pathogen attack in plants and plant defense against infection, thus helping management strategies. The aim of this study was verify differences in distribution of mineral nutrients in coffee leaf tissues around foliar lesions of bacterial blight of coffee, blister spot, cercospora leaf, phoma leaf spot and coffee leaf rust. Fragments of leaf tissue surrounding the lesions were dehydrated in silica gel, carbon covered and subjected to X-ray microanalysis (MAX). Thirty-three chemical elements were detected in leaf tissue; however, there was variation in potassium and calcium contents surrounding the lesions. The highest potassium content was found in asymptomatic tissues surrounding the lesions, decreasing toward the transition zone and reaching minimum content in symptomatic tissues. The highest calcium content was found in symptomatic tissues, decreasing toward the transition zone and reaching minimum content in asymptomatic tissues. Therefore, MAX can be used to analyze the composition and distribution of nutrients in plant tissues and, if associated with mineral nutrition, it may help understand host-pathogen relationships and plant disease management.
Resumo:
All essential nutrients can affect the incidence and severity of plant diseases. Although silicon (Si) is not considered as an essential nutrient for plants, it stands out for its potential to decrease disease intensity in many crops. The mechanism of Si action in plant resistance is still unclear. Si deposition in plant cell walls raised the hypothesis of a possible physical barrier to pathogen penetration. However, the increased activity of phenolic compounds, polyphenol oxidases and peroxidases in plants treated with Si demonstrates the involvement of this element in the induction of plant defense responses. The studies examined in this review address the role of Si in disease control and the possible mechanisms involved in the mode of Si action in disease resistance in plants.