1 resultado para Neural network method
em Repositorio Institucional da UFLA (RIUFLA)
Filtro por publicador
- ABACUS. Repositorio de Producción Científica - Universidad Europea (1)
- Aberdeen University (1)
- Abertay Research Collections - Abertay University’s repository (1)
- Academic Archive On-line (Stockholm University; Sweden) (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (2)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (14)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (16)
- Aquatic Commons (1)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (4)
- Aston University Research Archive (76)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (10)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (30)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (21)
- Brock University, Canada (2)
- Bulgarian Digital Mathematics Library at IMI-BAS (28)
- CentAUR: Central Archive University of Reading - UK (97)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (2)
- Cochin University of Science & Technology (CUSAT), India (12)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (14)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (2)
- Dalarna University College Electronic Archive (6)
- Digital Commons - Michigan Tech (2)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons @ Winthrop University (1)
- Digital Commons at Florida International University (17)
- Digital Peer Publishing (6)
- DigitalCommons@The Texas Medical Center (2)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (12)
- DRUM (Digital Repository at the University of Maryland) (3)
- Duke University (1)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Instituto de Engenharia Nuclear, Brazil - Carpe dIEN (2)
- Instituto Politécnico de Bragança (1)
- Instituto Politécnico do Porto, Portugal (15)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (1)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (3)
- Memorial University Research Repository (1)
- National Center for Biotechnology Information - NCBI (7)
- Nottingham eTheses (4)
- Publishing Network for Geoscientific & Environmental Data (2)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (2)
- RDBU - Repositório Digital da Biblioteca da Unisinos (1)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (10)
- Repositório da Produção Científica e Intelectual da Unicamp (3)
- Repositório da Universidade Federal do Espírito Santo (UFES), Brazil (1)
- REPOSITORIO DIGITAL IMARPE - INSTITUTO DEL MAR DEL PERÚ, Peru (1)
- Repositorio Institucional da UFLA (RIUFLA) (1)
- Repositório Institucional da Universidade de Brasília (2)
- Repositório Institucional da Universidade Federal do Rio Grande do Norte (2)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (134)
- Research Open Access Repository of the University of East London. (2)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (6)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- Scielo Saúde Pública - SP (26)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (1)
- Universidad Autónoma de Nuevo León, Mexico (1)
- Universidad de Alicante (6)
- Universidad del Rosario, Colombia (1)
- Universidad Politécnica de Madrid (37)
- Universidade Complutense de Madrid (1)
- Universidade do Minho (4)
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP) (1)
- Universidade Federal de Uberlândia (1)
- Universidade Federal do Pará (10)
- Universidade Federal do Rio Grande do Norte (UFRN) (17)
- Universitat de Girona, Spain (4)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (14)
- Université de Montréal (1)
- Université de Montréal, Canada (6)
- University of Michigan (1)
- University of Queensland eSpace - Australia (43)
- University of Southampton, United Kingdom (1)
- WestminsterResearch - UK (1)
Resumo:
The increased demand for using the Industrial, Scientific and Medical (ISM) unlicensed frequency spectrum has caused interference problems and lack of resource availability for wireless networks. Cognitive radio (CR) have emerged as an alternative to reduce interference and intelligently use the spectrum. Several protocols were proposed aiming to mitigate these problems, but most have not been implemented in real devices. This work presents an architecture for Intelligent Sensing for Cognitive Radios (ISCRa), and a spectrum decision model (SDM) based on Artificial Neural Networks (ANN), which uses as input a database with local spectrum behavior and a database with primary users information. For comparison, a spectrum decision model based on AHP, which employs advanced techniques in its spectrum decision method was implemented. Another spectrum decision model that considers only a physical parameter for channel classification was also implemented. Spectrum decision models evaluated, as well as ISCRa's architecture were developed in GNU-Radio framework and implemented on real nodes. Evaluation of SDMs considered metrics of: delivery rate, latency (Round Trip Time - RTT) and handoff. Experiments on real nodes showed that ISCRa architecture with ANN based SDM increased packet delivery rate and presented fewer frequency variation (handoff) while maintaining latency. Considering higher bandwidth as application's Quality of Service requirement, ANN-SDM obtained the best results when compared to other SDM for cognitive radio networks (CRN).