4 resultados para Herbicidal analysis, Chemometrics, Differential pulse stripping voltammetry

em Repositorio Institucional da UFLA (RIUFLA)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tetradifon, a potentially carcinogenic and mutagenic pesticide, can contribute to environmental and human contamination when applied to green bell pepper crops. In this context, in this work, a reliable and sensitive method for determination of tetradifon in Brazilian green bell pepper samples involving a differential pulse voltammetry (DPV) technique on a glassy carbon electrode is proposed. The electrochemical behavior of tetradifon as followed by cyclic voltammetry (CV) suggests that its reduction occurs via an irreversible five–electron transfer vs. Ag|AgCl, KCl 3 M reference electrode. Very well–resolved diffusion controlled voltammetric peaks have been obtained in a supporting electrolyte solution composed of a mixture of 40% dimethylformamide (DMF), 30% methanol, and 30% NaOH 0.3 mol L−1 at −1.43, −1.57, −1.73, −1.88, and −2.05 V. The proposed DPV method has a good linear response in the 3.00 – 10.0 μmol L−1 range, with a limit of detection (L.O.D) of 0.756 μmol L−1 and 0.831 μmol L−1 in the absence and in the presence of the matrix, respectively. Moreover, improved L.O.D results (0.607 μmol L−1) have been achieved in the absence of DMF from the supporting electrolyte solution. Recovery has been evaluated in five commercial green bell pepper samples, and recovery percentages ranging from 91.0 to 109 have been obtained for tetradifon determinations. The proposed voltammetric method has also been tested for reproducibility, repeatability, and potential interferents, and the results obtained for these three analytical parameters are satisfactory for electroanalytical purposes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have developed an eletroanalytical method that employs Cu2+ solutions to determine arsenic in sugarcane brandy using an electrode consisting of carbon paste modified with carbon nanotubes (CNTPE) and polymeric resins. We used linear sweep (LSV) and differential-pulse (DPV) voltammetry with cathodic stripping for CNTPE containing mineral oil or silicone as binder. The analytical curves were linear from 30 to 110 μg L−1 and from 10 to 110 μg L−1 for LSV and DPV, respectively. The limits of detection (L.O.D.) and quantification (L.O.Q.) of CNTPE were 10.3 and 34.5 μg L−1 for mineral oil and 3.4 and 11.2 μg L−1 for silicone. We applied this method to determine arsenic in five commercial sugarcane brandy samples. The results agreed well with those obtained by hydride generation combined with atomic absorption spectrometry (HG AAS).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sugar is widely consumed worldwide and Brazil is the largest producer, consumer, and exporter of this product. To guarantee proper development and productivity of sugar cane crops, it is necessary to apply large quantities of agrochemicals, especially herbicides and pesticides. The herbicide tebuthiuron (TBH) prevents pre- and post-emergence of infesting weed in sugarcane cultures. Considering that it is important to ensure food safety for the population, this paper proposes a reliable method to analyse TBH in sugar matrixes (brown and crystal) using square wave voltammetry (SWV) and differential pulse voltammetry (DPV) at bare glassy carbon electrode and investigate the electrochemical behavior of this herbicide by cyclic voltammetry (CV). Our results suggest that TBH or the product of its reaction with a supporting electrolyte is oxidized through irreversible transfer of one electron between the analyte and the working electrode, at a potential close to +1.16 V vs. Ag |AgClsat in 0.10 mol L-1 KOH as supporting electrolyte solution. Both DPV and SWV are satisfactory for the quantitative analysis of the analyte. DPV is more sensitive and selective, with detection limits of 0.902, 0.815 and 0.578 mg kg-1, and quantification limits of 0.009, 0.010 and 0.008 mg kg-1 in the absence of the matrix and in the presence of crystal and brown sugar matrix, respectively. Repeatability lay between 0.53 and 13.8%, precision ranged between 4.14 and 15.0%, and recovery remained between 84.2 and 113% in the case of DPV conducted in the absence of matrix and in the presence of the crystal sugar matrix, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Procymidone, a potentially carcinogenic and mutagenic pesticide, can contribute to environmental and human contamination when applied to apple crops. In this work, we propose a reliable and sensitive method to determine procymidone in Brazilian apples. The method involves differential pulse (DPV) and square-wave voltammetry (SWV) techniques on a glassy carbon electrode. In a supporting electrolyte solution of 0.5 mol L−1 NaOH, procymidone undergoes an irreversible one-electron oxidation at +1.42 V by cyclic voltammetric vs. Ag|AgCl, KCl 3 M reference electrode. The proposed DPV and SWV methods have a good linear response in the 8.00–20.0 mg L−1 range, with limits of detection (LOD) of 0.678 and 0.228 mg L−1, respectively, in the absence of the matrix. We obtained improved LOD (0.097 mg L−1) in the presence of apple matrix and the supporting electrolyte solution. We used three commercial apple samples to evaluate recovery, and we achieved recovery percentages ranging from 94.6 to 110 % for procymidone determinations. We also tested the proposed voltammetric method for reproducibility, repeatability, and potential interferents, and the results were satisfactory for electroanalytical purposes.