6 resultados para Foliar fertilization
em Repositorio Institucional da UFLA (RIUFLA)
Resumo:
The objective of this study was to evaluate the effect of different sources and doses of copper (Cu) applied to leaves on growth and nutrition of coffee seedlings. The treatments consisted of combinations of two Cu sources (Cupric Sulfate Ammonium - CSA and Copper Sulfate - CS) and four Cu doses (0, 250, 500 and 1000 g ha-1). The sources of Cu in different doses were dissolved in water, calculated for the application volume of 400 L ha-1. The doses were divided in 3 applications at 20 days. The Cu content and concentration in the leaf, stem, and root in were measured. The dry matter of the leaf, stem, root and total and the utilization, absorption and translocation efficiency, in coffee seedlings were evaluated. In general the Cu content and concentration were obtained for the CS at doses of 250, 500 and 1000 g ha-1 Cu. The maximum increase of total dry matter was 48 and 51 g to CSA and CS, when applied 534 and 668 g ha-1, respectively. The highest utilization and absorption efficiency was found to CSA and CS, respectively. The translocation efficiency was similar for both sources.
Resumo:
A plant’s nutritional balance can influence its resistance to diseases. In order to evaluate the effect of increasing doses of N and K on the yield and severity of the maize white spot, two experiments were installed in the field, one in the city of Ijaci, Minas Gerais, and the other in the city of Sete Lagoas, Minas Gerais. The experimental delimitation was in randomized blocks with 5 x 5 factorial analysis of variance, and four repetitions. The treatments consisted of five doses of N (20; 40; 80; 150; 190 Kg ha-1 of N in the experiments 1 and 2) and five doses of K (15; 30; 60; 120; 180 Kg ha-1 of K in experiment 1 and 8.75; 17.5; 35; 50; 100 Kg ha-1 of K in experiment 2). The susceptible cultivar 30P70 was planted in both experiments. The plot consisted of four rows 5 meters long, with a useful area consisting of two central rows 3 meters each. Evaluations began 43 days after emergence (DAE) in the first experiment and 56 DAE in the second one. There was no significant interaction between doses of N and K and the disease progress. The effect was only observed for N. The K did not influence the yield and the severity of the disease in these experiments. Bigger areas below the severity progress curve of the white spot and better yield were observed with increasing doses of N. Thus, with increasing doses of N, the white spot increased and also did the yield.
Resumo:
Aiming to evaluate the dose and application schedule of foliar Zn-sulfate spraying in growing and yield of Arabic coffee Mundo Novo, a field experiment was set up on Distroferric Red Latosol, at the Experimental Station of the EPAMIG in São Sebastião do Paraíso. The statistical design used was randomized blocks in s 4 x 2 factorial scheme with five replications and a 30-plant plot with six central valid or four applications per agricultural year. Phosphorus and zinc leaf levels were evaluated for eight years and the yields. It was possible to conclude that there is a positive response to the in the leaves. Four low concentrations sprayings promoted higher yields than two high concentrations. The highest yields were achieved with 10.8 and 12.6 kg ha-1 of ZnSO4 and 4 yearly applications, respectively. It is suggested as a critical range for the Zn leaves values between 10 and 28 mg kg-1 and for P/Zn ratio, between 100 and 150. ) was sprayed under 4 concentrations 0; 0.5; 1.0 and 1.5%, two applied on the leaves in terms of yield, and to Zn levels
Spatial distribution of Yellow Sigatoka Leaf Spot correlated with soil fertility and plant nutrition
Resumo:
This study analyzed the spatial distribution of Yellow Sigatoka Leaf Spot relative to soil fertility and plant nutritional status using geostatistics. The experimental area comprised 1.2 ha, where 27 points were georeferenced and spaced on a regular grid 18 × 18 m. The severity of Yellow Sigatoka, soil fertility and plant nutritional status were evaluated at each point. The spherical model was adjusted for all variables using restricted maximum likelihood. Kriging maps showed the highest infection rate of Sigatoka occurred in high areas of the field which had the highest concentration of sand, while the lowest disease was found in lower areas with lower silt, organic matter, total exchangeable bases, effective cation exchange capacity, base saturation, Ca and Mg in soil, and foliar sulfur (S). These results may help farmers manage Yellow Sigatoka disease more effectively, with balanced fertilization and reduced fungicide application. This practice minimizes the environmental impact and cost of production while contributing to production sustainability.
Resumo:
Forestry has grown in a continuous and accelerated manner in Brazil, constituting a strategic activity for the generation of employment, income and tributes, favoring social and economic development of Brazilian agribusiness. The objectives of this study were: (1) evaluate the contents of K, Ca and Mg in the reserve compartments, non-interchangeable, interchangeable, available and the speed of its release, its correlations and its effects over productivity (annual average increment – AAI) of eucalyptus plantations, in forest sites cultivated in soils of the state of Rio Grande do Sul; (2) evaluate the initial growth, nutrition and physiological aspects of eucalyptus plants, cultivated with and without the addition of mineral sources of potassium (K), calcium (Ca) and magnesium (MG), in soils obtained from forest sites in the state of Rio Grande do Sul. In the first study, contents of K, Ca and Mg were evaluated in sulfuric digestion extract, boiling nitric acid, ammonium chloride, Mehlich-1 (only K), potassium chloride (Ca and Mg), as well as the release speed of these nutrients in the soil. In the second study, growth variables, nutritional aspects, photosynthetic rate (A) and transpiration rate of the plants (E) grown in distinct soils were evaluated under controlled conditions. The contents of K, Ca and Mg varied between compartments and depths in the studied soil classes, with the highest proportions found in the reserve compartment, indicating the importance of this compartment for the supplement of these nutrients at average and long terms. The great majority of K, Ca and Mg compartments presented significant correlations between each other, showing the dependence between them and the importance of evaluating the contents of these nutrients in the different compartments to adapt the nutritional management of the plants to each soil class, and to obtain continuous productions, minimizing the negative effects to the environment. Plants cultivated in soils that present larger reserves, availability and K, Ca and Mg release kinetics, presented similar height (H), stem diameter (SD) and shoot dry mass (SDM), with or without fertilization with K, Ca and Mg. The plants presented higher leaf content and accumulation of K in all soils fertilized with K, Ca and Mg.
Resumo:
The common bean (Phaseolus vulgaris L.), a staple food in nutritional diet of Brazilians and populations in developing countries, is a nutritionally rich legume with potential for biofortification. Approximately one third of the world population suffers from nutritional deficiencies, being necessary to increase the nutrient content in vegetables, especially iron (Fe), selenium (Se) and zinc (Zn), which are important micronutrients for plants and human health. In this context, three studies were carried out aiming to evaluate the potential of common bean cultivars to biofortification with Fe, Se and Zn, and verify the interaction between these minerals and iron bioavailability, in order to contribute to increased nutritional quality of grains, reducing the micronutrients deficiency and improving human health. In the first study, experiments were conducted in a greenhouse, with ten common bean cultivars in nutrient solution under different treatments with Fe, Se and Zn. The plant growth and the mineral content of the beans were evaluated in addition to verify the influence of polyphenol and phytate levels on Fe bioavailability in grains fortified with Zn and Se. The evaluated beans cultivars have proved promising for simultaneous biofortification with these nutrients without greatly affecting Fe bioavailability. In the second study, the aim was evaluate the interaction between Fe, Se and Zn in cultivars consumed in Brazil or in USA. Gene expression and root microscopy analysis were performed in order to understand the positive effect of Zn supply on the Fe uptake by roots. The expression of genes related to the transport and uptake of Fe and Zn did not clearly explain the influence of Zn in Fe nutrition. The roots microscopy and the evaluation of nutrient solutions used showed that, in the presence of Zn, there was Fe accumulation in epidermis of the roots and not in the vascular system, prone to be precipitated when it goes through the root membrane. In the latest study, a field experiment was conducted to evaluate the effect of Zn fertilization via soil and foliar, in the content and accumulation of Fe and Zn in grains and in the yield of common bean cultivars, in addition to verify the amount of these micronutrients supplied by biofortified beans. The fertilization with Zn did not affect the yield, but provided high levels of this nutrient in grains of the cultivars analyzed, representing 27% of the recommended daily intake of Zn. The higher Fe content in beans, obtained when there was no application of foliar Zn, supplies 56% of the daily requirement of Fe.