3 resultados para Contaminantes emergentes

em Repositorio Institucional da UFLA (RIUFLA)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present study aimed to characterize and quantify four contaminants (ethyl carbamate, 2,3-butanedione, furfural and 5-hydroxymethylfurfural) present in alembic cachaça and industrial. Were collected forty-four samples of cachaça in the southern regions, the Midwest, southeast of Minas Gerais and São Paulo state, and subsequently subjected to physical, chemical and chromatographic analyzes. The physicochemical analyzes were performed according to the methodology described by the Ministry of Agriculture, Livestock and Supply (MAPA). The ethyl carbamate, 2,3-butanedione, furfuaral and 5 hydroxymethylfurfural were characterized and quantified by high-performance liquid chromatography (HPLC). The results of the ethyl carbamate analysis, it was found that both samples showed column cachaças outside the standards required by law, with the values 245.31 235.53 L-1 ug and none of the liquor samples alembic showed concentration greater than 210.0 ug L-1 , and the method is very sensitive to low limits of detection and quantification. In determining 2,3-butanedione, it was revealed that the column cachaças showed higher levels of contaminants when compared to cachaça alembic. In the quantification of furfural and 5-hydroxymethylfurfural was developed and validated analytical methods employed to high-performance liquid chromatography (HPLC) with DAD detector. Samples column cachaças showed higher values than the limit established by Brazilian legislation and ranged from 7.00 to 5.63 mg / 100 ml of anhydrous alcohol over the alembic cachaça.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of the present study was the evaluation of the presence of organic and inorganic contaminants in samples of aged cachaça from the South of the state of Minas Gerais. Furfural, methanol and copper were determined by colorimetric reactions, while the analyses of ethyl carbamate and acrolein were performed by GC/MS and HPLC, respectively. High levels of furfural and copper were obtained. All samples showed concentrations below the established by legislation for the ethyl carbamate, and for acrolein, only one sample showed higher levels. Methanol was not detected in the samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, magnetic photocatalysts were synthesized containing differents levels of TiO2 (40, 60 e 80%) supported at the supporter of C/LV, forming the photocatalysts 40, 60, 80Ti/C/LV, using tar pitch as carbon (C) source and red mud (LV) as iron source. The prepared magnetic photocatalysts and TiO2 were used to degrade the Remazol Black textile dye (PR5) and the organic material present in samples of a textile dye effluent. The characterization of photocatalysts by Raman, X-Ray Diffraction, Transmission Electron Micoscope and Scanning, Energy Dispersive X-ray Spectrometry, Termogravimetry and Elemental Analysis, confirms the presence of carbon and magnetite in support C/LV and the presence of TiO2 in prepared photocatalysts. The photocatalytic reactions with TiO2 were analyzed by different experimental conditions, such as: mass of TiO2 (30-240 mg), solution pH (2-10), light intensity (0.871 and 1.20 mWcm-2), type of radiation (UV and sunlight-1.420 mWcm-2), radiation incidence area (44.2 to 143.1 cm2) and dissolved oxygen (OD, 1.9 and 7.6 mg L- 1). Results showed that reactions with the following conditions: 220 mg of TiO2, pH 10, solar radiation, 7.6 mg L-1 of OD and an incidence area of radiation of 143.1 cm2 showed the best results for degradation of PR5 dye. Photocatalytic reactions with magnetic photocatalysts for degrading PR5 shows that efficiency increases with TiO2 content in the C/LV support, where, above 60% of TiO2, there was not significant increase in reaction velocity. In addition, solar radiation has proved to be advantageous for photocatalytic reactions. In order to verify the presence of a non-magnetic fraction in the photocatalyst 60Ti/C/LV0, magnetic separation was proceeded. The characterizations of the magnetic (FM) and nonmagnetic (NMF) fraction confirmed that about 25% of TiO2 did not fixed in 60Ti/C/LV photocatalyst. Results of photocatalytic reactions with FM and FNM showed that both phases have photocatalytic activity for degradation of PR5. The reactions executed for the degradation of organic matter present in the actual sample of textile effluent showed that TiO2 and magnetic photocatalyst 60Ti/C/ LV have better results for color removal (85 to 35%), soluble solids ( 11 and 3%), DQO (90 and 86%) and turbidity (94 and 11%) than the treatment done by the textile industry. Sedimentation kinetics tests in presence of a magnet showed that photocatalysts are separated faster from aqueous environment than pure TiO2. Obtained results showed that magnetic photocatalysts have excellent photocatalytic activity and can be separated from the reaction environment on a simple and quick way when a magnetic field is applied.