2 resultados para Compósito de blenda polimérica. Politereftalato de etileno. Polietileno acrilato de metila e linter de algodão

em Repositorio Institucional da UFLA (RIUFLA)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to improve the quality and safety of food, the active packaging emerges as a new technology based on the release of composites beneficial to food products. Thus, biodegradable films incorporated with active substances have the function of acting as a barrier to external elements, protecting the product and increasing its shelf life. They are formulated from proteins, polysaccharides, lipids or from the combination of these compounds. However, there is a need to improve the performance properties of these packages. Nanotechnologies, then, emerges with the study of many nanoparticles as additives to modify the performance of biodegradable polymers. With this, we aimed at developing and active antioxidant film of corn starch blenders and whey protein isolate with rosemary essential oil or microcapsules of rosemary essential oil reinforced with sodium montmorillonite (MMTNa + ) nanoparticles by extrusion. The films were developed and characterized in a first stage for the selection of the best polymeric blender using the following analyses: water vapor permeability (WVP), machanical properties; optical, thermogravimetry (TG), differential scanning calorimetry (DSC), x-ray diffraction (XRD) and scanning electron microscopy (SEM). In the second stage, montmorillonite clay nanoparticles and rosemary essential oil were added as reinforcement to evaluate its antioxidant effect. In a third stage, we studied the addition of microcapsules of rosemary essential oil (MR) as a form of protecting the active agent and its antioxidant potential in the films. The results indicate that the development of p olymeric blender with 30% of corn starch substitution is the most indicated for future work. The addition of rosemary essential oil or microcapsule of rosemary essential oil allowed for the obtaining of nanocomposites with antioxidant potential for application in food packages.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coffee is one of the most valuable exported agricultural product worldwide as well as the second most traded commodity after oil. This crop represents a source of employment and considerably accounts for the revenue of the country, besides its undeniable importance for local and world socioeconomical scenery. The quality of the coffee drink is directly related to the fruit ripening stage, which is found in different stages at harvesting due to the sequential flowering, increasing costs with the production and generating a lower-quality beverage. The asynchronous flowering of the coffee tree comes from the uneven development of buds, which can be influenced by environmental factors, taking into account that the anthesis takes place after a water deficit period, followed by precipitation. Changes in the hormone balance have been observed after water deficit and rehydration cycles, and such oscillation on the water status of the plant increased the level of ethylene in some species. This finding led to the association between the requirements at the flowering stage of the coffee tree and the involvement of the ethylene in promoting anthesis. The application of 1- MCP (ethylene action inhibitor) triggered the anthesis in coffee trees. And, in coffee seedlings in greenhouse conditions after a period of water shortage followed by irrigation, the profile of gene expression of the biosynthesis route and signaling of ethylene are changed in leaves and roots. The increased levels of the ethylene precursor (ACC) in roots throughout the dry season and the transportation of this compound into shoots may be the signal to trigger the anthesis in coffee tree after rehydration. Thus, in order to better understand the role of the ethylene in regulation of flowering, we analyzed the effects of the exogenous application of 1-MCP in different physiological characteristics and in the expression of genes related to the ethylene biosynthesis and signaling pathways in coffee leaves and bud from plants under field conditions. The evaluations and tissue sampling were carried out in different times treatments implementation: T1 – control, T2 – 1-MCP+Break-Thru, and T3 – Break-Thru. There was influence of 1-MCP and Break-Thru in gas exchange parameters and of 1-MCP contributed to the increase in relative water content. RT-qPCR analyses showed a different behavior in relation to the profile of gene expression in leaves and buds analyzed in the present study (CaACS1 – like, CaACO1 – like, CaACO4 – like, CaETR4 – like) and the expression levels were changed a few hours (2h) after applying the products. However, there was flowering only in plants treated with 1-MCP, in the absence of rain and irrigation.