2 resultados para Clone OSPC

em Repositorio Institucional da UFLA (RIUFLA)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coffea canephora is one of the most economically important coffee species and in Brazil, Conilon is the most widely cultivated plant of this species. Abiotic stresses such as temperature variations and drought periods are factors that significantly affect their production and tend to worsen with globally recognized climate changes. In an attempt to understand the molecular responses of coffee plants in water deficit conditions, recent studies have identified candidate genes (CGs) as CcDREB1D. This gene showed increased expression in response to drought in the leaves of clone 14 (drought tolerant) in relation to the clone 22 (sensitive to drought) of C. canephora Conilon. Based on these results, the identification of DREB genes and their subgroups (SGs) of C. canephora, the objective is to analyze in silico and also in vivo these genes expression in leaf and root of tolerant (14, 73 and 120) and sensitive clones (22) of C. canephora Conilon submitted or not to a water deficit. In silico expressions of all DREB genes were analyzed from the Coffee Genome Hub Database and in vivo expression was performed by the technique "reverse transcription-quantitative PCR" (RT-qPCR). In silico gene expression analysis was possible to identify DREB genes with potential responses to abiotic stresses, corroborating some validated in vivo results. In this analysis, several genes showed differential expression in response to drought among the SGs (IIV), the tolerant and sensitive clones and the leaf and root. These differentially expressed genes were identified as potential CGs and among them, it was found that most tolerant clones showed increased expression in relation to sensitive in response to drought, with higher expression levels for clones 14 and 73. These highest levels were observed in leaves compared to the roots and SG-I stood at greater number of genes expressed in response to drought. These results suggest that DREB CGs, as Cc05_g06840, Cc02_g03420 e Cc08_g13960, play an important role in the regulatory mechanisms of response to drought in C. canephora Conilon.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This research aimed to evaluate the wood and charcoal quality of hybrids clone of the crossing C. citriodora with C. torelliana in two different locations for charcoal production. Seven with 3,75 years old clones, planted at country of Itamarandiba – MG, and six 6,42 years old clones, planted in Dionísio – MG, were studied. For wood and charcoal quality analysis, samples were collected along the stem of the trees until the commercial height. Properties study of the wood was done by chemical analysis, basic density, superior heat power, and thermogravimetric analysis. The wood samples were carbonized in laboratory conditions with heating rate of 1.67 0 C.min -1 , starting at 100 0 C until 450 0 C and keeping on this temperature for 30 minutes. It were determined the carbonizations gravimetric yield, all in dry basis. The wood quality was evaluated based on the chemical immediate analysis, relative apparent density, and gross heating value. The experiment was installed according to the completely randomized design, with five repetitions. The collected data were submitted to analysis of variance and, when the evaluated effects were significant by “F” test, was applied the Scott-Knott test at 5% probability for multiple comparisons. For correlation analysis, Pearson correlation coefficient, tested by the "t" test at 5% probability was used. Results showed variability of wood between the genetic materials evaluated in relation to place and plant crossing. The thermal analysis of the wood showed significant variation between clones and it was possible to differentiate two stages of degradation (hemicelluloses and cellulose). The majority of the clones presented satisfactory properties for the charcoal production, while, clone 3, planted in Itamarandiba, obtained the best performance due it have the higher yield and energetic efficiency, thus, achieving the best potential for charcoal production. However, clone 9, planted in Dionísio, was the less indicated for charcoal production since it presented the lowest energetic efficiency, gravimetric yield, and densities.