11 resultados para Chlorophyll, fluorometric determination (Holm-Hansen et al., 1965)
em Repositorio Institucional da UFLA (RIUFLA)
Resumo:
The identities and quantities of the phenolic compounds and coumarins in twelve samples of sugar cane spirit aged in Quercus sp., Amburana cearensis, Cariniana legalis, Castanea sativa Mill, Ocotea sp., Cotyledon orbiculata L., and Hymenaea sp. casks were determined. These compounds have a direct influence on the sensory characteristics of aged beverages; some of them are considered to be markers for the aging process. The analysis of phenolic compounds was performed by HPLC. Solid phase extraction (SPE) was also used for the determination of coumarins. The concentrations of the principal compounds extracted varied according to the species of wood. The concentrations of total phenolic compounds ranged from 0.08 for a sample stored in a 4000-L jatobá barrel for a period of six months to 40.9 mg · L−1 for a sample aged in a 50000-L oak barrel for a period of 48 months. The use of the SPE technique removed interfering compounds from the samples, thereby improving the detection of coumarin.
Resumo:
The presence of contaminants, such as phosphate, in biodiesel, has several drawbacks for instance: current engines perform poorly, fuel tanks deteriorate, catalytic conversion is damaged, and particles emission is increased. Therefore, biodiesel quality control is extremely important for biodiesel acceptance and commercialization worldwide. In this context, a bare glassy carbon electrode (GCE) and another chemically modified electrode with iron hexacyanoferrate (Prussian Blue – PB) were developed for determination of phosphate in biodiesel. The LODs of 6.44 and 1.19 mg kg−1, and LOQs of 21.43 and 3.97 mg kg−1 were obtained for the bare GCE and the PB-modified GCE, respectively. The methodology was employed for analysis of Brazilian biodiesel samples, and it led to satisfactory results, demonstrating its potential application for biodiesel quality control. Additionally, recovery and interference tests were conducted, which revealed that the developed methods are suitable for analysis of phosphate in biodiesel samples.
Resumo:
A low-cost electrochemical method was developed for the determination of trace-level of methyl parathion (MP) based on the properties of graphite-modified basal plane pyrolytic graphite electrode (graphite-bppg). A combination of graphite-bppg with square-wave voltammetric (SWV) analysis resulted in an original, sensitive and selective electrochemical method for determination of MP pesticide in drinking water. The electrode was constructed and the electrochemical behavior of MP was studied. Immobilization is achieved via film modification from dispersing graphite powder in deionized water and through pipeting a small volume onto the electrode surface allowing the solvent to volatilize. The strong affinity of the graphite modifier for the phosphorous group of the MP allowed the deposition of a significant amount of MP in less than 60 seconds. The cyclic voltammetric results indicate that the graphite-bppg electrode can enhance sensitivity in current intensity towards the quasi-reversible redox peaks of the products of the cathodic reduction of the nitro group at negative potential (peak I = 0.077 V and peak II = –0.062 V) and that the cathodic irreversible peak (peak III = –0.586 V) in comparison with bare bppg electrode and is also adsorption controlled process. Under optimized conditions, the concentration range and detection limit for MP pesticide are respectively 79.0 to 263.3 mmol L-1 and 3.00 mmol L-1. The proposed method was successfully applied to MP determination in drinking water and the performance of this electrochemical sensor has been evaluated in terms of analytical figures of merit.
Resumo:
This work has been carried out in order to determine the copper content in sugar cane spirit samples from the south of Minas Gerais, using a carbon paste electrode modified with ascorbic acid and carbon nanotubes using the square wave voltammetry technique. The following parameters were studied: Ed (deposit potencial). Td (deposit time), f (frequency), A (amplitude) and ΔEs (increment scanning). The analytical curve was built in an interval from 0.5 to 12 mg L-1 and a coefficient of linear correlation of 0.997 Three sugar cane spirit samples were analysed, which presented copper content ranging from 0.29 to 1.59 mg L-1.
Resumo:
Tetradifon, a potentially carcinogenic and mutagenic pesticide, can contribute to environmental and human contamination when applied to green bell pepper crops. In this context, in this work, a reliable and sensitive method for determination of tetradifon in Brazilian green bell pepper samples involving a differential pulse voltammetry (DPV) technique on a glassy carbon electrode is proposed. The electrochemical behavior of tetradifon as followed by cyclic voltammetry (CV) suggests that its reduction occurs via an irreversible five–electron transfer vs. Ag|AgCl, KCl 3 M reference electrode. Very well–resolved diffusion controlled voltammetric peaks have been obtained in a supporting electrolyte solution composed of a mixture of 40% dimethylformamide (DMF), 30% methanol, and 30% NaOH 0.3 mol L−1 at −1.43, −1.57, −1.73, −1.88, and −2.05 V. The proposed DPV method has a good linear response in the 3.00 – 10.0 μmol L−1 range, with a limit of detection (L.O.D) of 0.756 μmol L−1 and 0.831 μmol L−1 in the absence and in the presence of the matrix, respectively. Moreover, improved L.O.D results (0.607 μmol L−1) have been achieved in the absence of DMF from the supporting electrolyte solution. Recovery has been evaluated in five commercial green bell pepper samples, and recovery percentages ranging from 91.0 to 109 have been obtained for tetradifon determinations. The proposed voltammetric method has also been tested for reproducibility, repeatability, and potential interferents, and the results obtained for these three analytical parameters are satisfactory for electroanalytical purposes.
Resumo:
A new voltammetric method for the determination of Delta(9)-tetrahydrocannabinol (Delta(9)-THC) is described. The voltammetric experiments were accomplished in N-N dimethylformamide/water (9: 1, v/v), using tetrabutylammonium tetrafluoroborate (TBATFB) 0.1 mol/L as supporting electrolyte and a glassy carbon disk electrode as the working electrode. The anodic peak current was observed at 0.0 V (vs. Ag/AgCl) after a 30 s pre-concentration step under an applied potential of -1.2 V (vs. Ag/AgCl). A linear dependence of Delta(9)-THC detection was obtained in the concentration range 2.4-11.3 ng/mL, with a linear correlation coefficient of 0.999 and a detection limit of 0.34 ng/mL. The voltammetric method was used to measure the content of Delta(9)-THC in samples (hemp and hashish) confiscated by the police. The elimination of chemical interferences from the samples was promptly achieved through prior purification using the TLC technique, by employing methanol/water (4: 1, v/v) as the mobile phase. The results showed excellent correlation with results attained by HPLC.
Resumo:
The development of an electroanalytical method for simultaneous determination of copper and lead ions in sugar cane spirit (cachaça) using carbon paste electrode modified with ascorbic acid and carbon nanotubes (CPE-AaCNT) is described. Squarewave voltammetry (SWV) with anodic stripping was employed, and this technique was optimized with respect to the following parameters: frequency (50 Hz), amplitude (100 mV) and scan increment (9 mV). The analytical curves were linear in the range from 0.0900 to 7.00 mg L - 1 for lead and copper. The limits of detection were 48.5 and 23.9 µg L - 1 for lead and copper, respectively. The developed method was applied to the simultaneous determination of copper and lead in five commercial samples of sugar cane spirit. The results were in good agreement with those obtained by F AAS/GF AAS (flame atomic absorption spectrometry/graphite furnace atomic absorption spectrometry) and showed that CPE-AaCNT can be successfully employed in the simultaneous determination of these metals in real sugar cane spirit samples.
Resumo:
Ethyl carbamate (EC) is a common substance in fermented foods and drinks, and its quantification is important because of its carcinogenic nature and its usually presence in alcoholic beverages. The present work involved the development and validation of an analytical method for the evaluation of EC in cachaça by HPLC-FLD after previous derivatization with xanthydrol. The method presented a mean recovery of 94.88%, an intra-day precision of 4.19% (30.0 μg L−1) and 3.32% (75.0 μg L−1), a coefficient of determination (r2) equal to 0.9985, and limits of detection and quantification equal to 6.39 and 21.32 μg L−1, respectively. The results show that the analytical method is accurate, reproducible and linear over the concentration range from 5.0 to 160 μg of EC per litre. The method was applied to the analysis of EC in cachaça, the analyses being rapid and efficient.
Resumo:
Sugar is widely consumed worldwide and Brazil is the largest producer, consumer, and exporter of this product. To guarantee proper development and productivity of sugar cane crops, it is necessary to apply large quantities of agrochemicals, especially herbicides and pesticides. The herbicide tebuthiuron (TBH) prevents pre- and post-emergence of infesting weed in sugarcane cultures. Considering that it is important to ensure food safety for the population, this paper proposes a reliable method to analyse TBH in sugar matrixes (brown and crystal) using square wave voltammetry (SWV) and differential pulse voltammetry (DPV) at bare glassy carbon electrode and investigate the electrochemical behavior of this herbicide by cyclic voltammetry (CV). Our results suggest that TBH or the product of its reaction with a supporting electrolyte is oxidized through irreversible transfer of one electron between the analyte and the working electrode, at a potential close to +1.16 V vs. Ag |AgClsat in 0.10 mol L-1 KOH as supporting electrolyte solution. Both DPV and SWV are satisfactory for the quantitative analysis of the analyte. DPV is more sensitive and selective, with detection limits of 0.902, 0.815 and 0.578 mg kg-1, and quantification limits of 0.009, 0.010 and 0.008 mg kg-1 in the absence of the matrix and in the presence of crystal and brown sugar matrix, respectively. Repeatability lay between 0.53 and 13.8%, precision ranged between 4.14 and 15.0%, and recovery remained between 84.2 and 113% in the case of DPV conducted in the absence of matrix and in the presence of the crystal sugar matrix, respectively.
Resumo:
Procymidone, a potentially carcinogenic and mutagenic pesticide, can contribute to environmental and human contamination when applied to apple crops. In this work, we propose a reliable and sensitive method to determine procymidone in Brazilian apples. The method involves differential pulse (DPV) and square-wave voltammetry (SWV) techniques on a glassy carbon electrode. In a supporting electrolyte solution of 0.5 mol L−1 NaOH, procymidone undergoes an irreversible one-electron oxidation at +1.42 V by cyclic voltammetric vs. Ag|AgCl, KCl 3 M reference electrode. The proposed DPV and SWV methods have a good linear response in the 8.00–20.0 mg L−1 range, with limits of detection (LOD) of 0.678 and 0.228 mg L−1, respectively, in the absence of the matrix. We obtained improved LOD (0.097 mg L−1) in the presence of apple matrix and the supporting electrolyte solution. We used three commercial apple samples to evaluate recovery, and we achieved recovery percentages ranging from 94.6 to 110 % for procymidone determinations. We also tested the proposed voltammetric method for reproducibility, repeatability, and potential interferents, and the results were satisfactory for electroanalytical purposes.
Resumo:
We have developed an eletroanalytical method that employs Cu2+ solutions to determine arsenic in sugarcane brandy using an electrode consisting of carbon paste modified with carbon nanotubes (CNTPE) and polymeric resins. We used linear sweep (LSV) and differential-pulse (DPV) voltammetry with cathodic stripping for CNTPE containing mineral oil or silicone as binder. The analytical curves were linear from 30 to 110 μg L−1 and from 10 to 110 μg L−1 for LSV and DPV, respectively. The limits of detection (L.O.D.) and quantification (L.O.Q.) of CNTPE were 10.3 and 34.5 μg L−1 for mineral oil and 3.4 and 11.2 μg L−1 for silicone. We applied this method to determine arsenic in five commercial sugarcane brandy samples. The results agreed well with those obtained by hydride generation combined with atomic absorption spectrometry (HG AAS).