2 resultados para Characterization techniques

em Repositorio Institucional da UFLA (RIUFLA)


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work presents a study on the production of biodiesel by esterification reaction of oleic acid with methanol using batch reactor and different catalysts based on CeO2 and WO3 and HZSM-5. Acid treatment was performed in order to increase the catalytic activity. Different characterization techniques were performed, among them X-ray diffraction (XRD), Thermogravimetric analysis TGA/DTA, Spectroscopy in the Region in Fourier Transform Infrared (FTIR) and X-ray fluorescence (XRF). The effects of independent variables: temperature, molar ratio of oil: alcohol and the amount of catalyst and their interactions on the dependent variable (conversion of oleic acid to the corresponding ester). Overall, through the results obtained in the characterization was observed that the applied treatments were efficient, however the XRF technique, indicated that tungsten oxide leaching could occur during the preparation of the materials. The treatments performed on HZSM-5 caused no significant changes in the structure indicating that the zeolite was quite resistant to the treatments used. It was evaluated using complete 23 factorial design. For the catalysts investigated, the best reaction conditions were obtained when using higher levels of the independent variables temperature and amount of catalyst. However, for the variable molar ratio the lowest level showed significant yields for most of the synthesized catalyst, obtaining maximum conversion to the OC (67.97%), OW (74.37%), HZSM-5 (61.16%) OC-OW 1 (75.93%), OC-OW 2 (82.57%), OC-OW 3 (79.15%), S/OC-OW 1 (86.90%), S/OC-OW 2 (91.04%), S/OC-OW 3 (88.60%), S/OC-OW/H 1 (92.34%), S/OC-OW/H 2 (100%) and S/OC-OW/H 3 (98.16%). According to the experimental design, the temperature has the biggest influence on the reaction variable for all the synthesized catalysts. Among the catalysts investigated S/OC-OW/H 2 e S/OC-OW/H 3 were more effective. Reuse tests showed that the catalyst activity decreased after each cycle, indicating that the regeneration process was effective. The leaching test indicated that the catalysts are heterogeneous in the evaluated operating range. The catalysts investigated showed themselves promising for the production of biodiesel.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Demand for potassium in Brazil is large and is constantly increasing, but only about 5% of all consumed potassium is produced in the country. This low domestic production implies high rate of potassium imports, leaving the country vulnerable in the event of any difficulty to import this product and currency fluctuations. The modified glauconite is a rock that has a high potential for potassium exploration, found in Minas Gerais state, its extraction is relatively cheap and the prospected rock volume is high. The difficulty for its use as a direct source of potassium is in its low solubility. Thus, the objective of this study was to perform a chemical and mineralogical characterization of the modified glauconite and evaluate the effectiveness of techniques and treatments in the potassium solubilization contained in the rock. For this study, it was used characterization techniques such as X-ray diffraction, scanning electron microscopy, diffraction by Synchrotron Light and chemical analysis of high and low power of potassium extraction. Also granulometric testing and thermal treatments with different forms of calcination were carried out. Overall, it was found that the modified glauconite is a compound of minerals, of the mica groups K-feldspar and quartz and calcination substantially alter the crystal structure of these minerals, increasing the potassium availability. While the natural solubility of glauconite modified be very low, rock calcination added with high fluxes of calcium and low magnesium content at 1200 °C led to potassium solubility increase in order of 100 times compared to that observed in the glauconite natural modified.