2 resultados para Cake.

em Repositorio Institucional da UFLA (RIUFLA)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The potential of natural and heat-treated Macauba palm cake as adsorbent for the removal of Methylene Blue (MB) and Congo Red (CR) from solution has been investigated. Equilibrium adsorption was attained in <7 h and the process was favored at pH 5.0 for MB and pH 6.5 for CR with an adsorbent (g):adsorbate (mL) ratio of 1:200 and an initial concentration of adsorbate of 25 mg L−1. The maximum adsorption capacities of the natural and heat-treated materials were, respectively, 25.80 and 32.30 mg g−1 for MB, and 32.00 and 20.30 mg g−1 for CR. The isotherm model proposed by Sips represented most adequately the adsorption of MB and CR. The adsorptions of the dyes were best described in terms of a pseudo second-order reaction. Thermodynamic parameters such as ΔHo, ΔSo and ΔGo were calculated. The adsorption process was found to be endothermic and spontaneous. Macauba palm cake is adequate for the removal of waste dye from industrial effluents by virtue of its abundance, low cost and efficiency of adsorption.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work investigated the effects of temperature and of rate of heating on the kinetic parameters of pyrolysis of castor beans presscake, a byproduct generated in the biodiesel production process. Pyrolysis process was investigated by thermogravimetric analysis, and parameters were obtained from nonisothermal experiments. The results obtained from the process of thermal decomposition indicated the elimination of humidity and the decomposition of organic components of the biomass. DTG curves showed that the heating rate affects the temperature of maximum decomposition of the material. Kinetic parameters such as activation energy and pre-exponential factor were obtained by model-free methods proposed by Flynn–Wall–Ozawa (FWO), Kissinger–Akahira–Sunose (KAS), and Kissinger. Experimental results showed that the kinetic parameters values of the FWO and KAS methods display good agreement and can be used to understand the mechanism of degradation of the cake. In a generalized way, the results contribute to better understanding of the processes of biomass pyrolysis.