3 resultados para Óxido nítrico sintasa de tipo III
em Repositorio Institucional da UFLA (RIUFLA)
Resumo:
With the emergence of new genetic lines due to intense breeding improvement on swine production in recent years, there is the need to adapt more accurately diets for the current sows, which have higher nutritional demands. The use of functional amino acids aimsto optimize the sows production and among these amino acids arginine has excelled. Arginine is involved in several important metabolic pathways, for example, it serves as a substrate forsynthesis of protein, creatine, nitric oxide, polyamines, citrulline, agmatine, ornithine, proline, and glutamate. It also helps to stimulate the secretion of some hormones such as insulin, prolactin, and growth hormone.As arginine plays such important roles, its supplementation has been suggested in lactation feed once it may enhance the development of the mammary gland and milk nutritional profile, thus, providing a better piglet development.Thus, the objective was to evaluate the effect of lactation feed supplementation with L-Arginine on the productive performance of primiparoussows and their respective litter.One hundred forty sows from the same genetic lineage on a commercial farm, located in the city of Oliveira, MG were used in this study, in a completely randomized design with five treatments: control diet without amino acid supplementation and four diets with increasing levels of L-Arginine supplementation (containing 98.5% purity) - 0.5, 1.0, 1.5, and 2.0%. Each treatment hadtwenty-eight swine sows, and the experimental unit was the sowand its litter.It was used ‘on top’ amino acid supplementation.All data was submitted to variance analysis using the SAEG Software: version 9.1 (SAEG, 2005).The data relating to days of lactation were compared by Tukey test (5%). L-Arginine supplementation levels in lactation feed did not influence (P>0.05) average daily feed intake, body condition variables, and blood parameters of the sows (urea, creatinine, and non-esterified fatty acids) as well as it did not affect the dry matter, crude protein, and amino acid profile of milk and the litter performance. There was effect (P<0.05) of days of lactation on the percentage of crude protein and amino acids in milk, which reduced througout the days of lactation. The L-Arginine supplementation on the lactation diet at levels of 0.5, 1.0, 1.5, and 2.0% did not influence the sow and its respective litter performance.
Resumo:
The amount of waste generated by industries has increased gradually in recent years. The proper disposal of residues has been an area of study of many researchers. Several organic compounds are considered potential contaminants of natural waters due to their high toxicity, difficult natural degradation and long persistence in the environment. Ways of recovery and reutilization as well as concepts that minimize the generation of wastes have been increasing widely. Organometallic compound of pyrazine carboxylic acid has proven to be of great interest in many areas. Herein, we studied the use of pyrazine tetracarboxylic acid ligand for complex formation with iron (Fe). The binder (C 8H4N2O8) was synthetized with the addition of Fe (complex) and tested as a catalyst in oxidation reactions of the organic model compound methylene blue (MB). Tetramethyl pyrazine was used in the synthesis, which was oxidized with potassium permanganate in order to form the ligand. The ligand (C 8H4N2O8) was then characterized to validate its formation. For the complex solution, it was used (C 8H4N2O8) and Fe (NO3)3.9H2O 0,01molL-1. After preliminary tests, it was found that the best ratio of Fe and the ligand was 2: 1. Through the oxidation tests, it could be seen that the complex has great potential for the degradation of different concentrations of MB. During only 20 minutes of reaction, approximately 60% of MB 500 mgL -1 was oxidized. The use of the complex was found to be an attractive alternative for oxidation of effluents with high organic compounds levels and contributes to the minimization of organic contaminants hazards in the environment.
Resumo:
Phosphate fertilizers are critical for crop production in tropical soils, which are known for having high phosphate-fixing capacity and aluminium saturation, as well as low pH and calcium contents. Fluorine is a component of many phosphate rocks used to make phosphate fertilizers, via a process that generates hexafluorosilicic acid (H2SiF6). While many treatment technologies have been proposed for removal of fluorine in industrial facilities, little attention has been given to a process of neutralizing H2SiF6 with calcium oxide aiming to find out an alternative and sustainable use of a by-product with a great potential for beneficial use in tropical agriculture. This study evaluated the effect of a by-product of phosphoric acid production (fluorite with silicon oxide, hereafter called AgroSiCa) in levels of phosphorus (P), calcium (Ca), silicon (Si), aluminum (Al) and fluorine (F) and some others parameters in soils as on growth of soybean and corn. Experiments were conducted in a greenhouse condition at the Federal University of Lavras (UFLA), Lavras, Minas Gerais, using different types of soils in tropical regions and different doses of AgroSiCa. The application of AgroSiCa resulted in a slight increase in soil pH and significant increases in calcium, phosphorus and silicon in the soil solution and the shoots of corn and soybeans. We also found very low levels of fluoride in all soil leachates. A significant reduction of labile aluminum levels found in all soils after the cultivation of corn and soybeans. In sum, AgroSiCa improved soil properties and contributed to better growth of both cultures. In sum, AgroSiCa improved soil properties and contributed to a better growth of both crops. Our results show that reacting H2SiF6 derived from the wet-process phosphoric acid production with calcium oxide leads to a by-product with potential for agricultural use, especially when applied in highly-weathered soils. Besides providing calcium and silicon to plants, the use of such by-product in soils with high phosphate-fixing capacity and high aluminium saturation delivers additional benefits, since fluoride and silicon can play an important role in improving soil conditions due to the formation of less plant-toxic forms of aluminium, as well as upon decreasing phosphate fixation, thus improving root development and making fertilizer-derived phosphate more available for plant growth.