26 resultados para zircon geochronology

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

LA-MC-ICP-MS U-Pb zircon dating was performed on syntectonic, early post-collisional granitic and associated mafic rocks that are intrusive in the Brusque Metamorphic Complex and in the Florianopolis Batholith, major tectonic domains separated by the Neoproterozoic Major Gercino Shear Zone (MGSZ) in south Brazil. The inferred ages of magmatic crystallization are consistent with field relationships, and show that the syntectonic granites from both domains are similar, with ages around 630-620 Ma for high-K calc-alkaline metaluminous granites and ca. 610 Ma for slightly peraluminous granites. Although ca. 650 Ma inherited zircon components are identified in granites from both domains, important contrasts on the crustal architecture in each domain are revealed by the patterns of zircon inheritance, indicating different crustal sources for the granites in each domain. The granites from the southern domain (Floriandpolis Batholith) have essentially Neoproterozoic (650-700 Ma and 900-950 Ma) inheritance; with a single 2.0-2.2 Ga inherited age obtained in the peraluminous Mariscal Granite. In the northern Brusque Metamorphic Complex, the metaluminous Rio Pequeno Granite and associated mafic rocks have scarce inherited cores with ages around 1.65 Ga, whereas the slightly peraluminous Serra dos Macacos Granite has abundant Paleoproterozoic (1.8-2.2 Ga) and Archean (2.9-3.4 Ga) inherited zircons. Our results are consistent with the hypothesis that the MGSZ separates domains with distinct geologic evolution; however, the contemporaneity of 630-610 Ma granitic magmatism with similar structural and geochemical patterns on both sides of this major shear zone indicates that these domains were already part of a single continental mass at 630 Ma, reinforcing the post-collisional character of these granites. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Tamboril-Santa Quiteria Complex is an important Neoproterozoic granitic-migmatitic unit from the Ceara Central Domain that developed from ca. 650 to 610 Ma. In general the granitoids range in composition from diorite to granite with predominance (up to 85%) of granitic to monzogranitic composition with biotite as the main mafic AFM phase. Geochemical and Pb-207/Pb-206 evaporation zircon geochronology studies were applied in a group of these abundant monzogranitic rocks from the region of Novo Oriente in the southern portion of the Ceara Central Domain. In this area the granitoids are weakly peraluminous biotite granitoids and deformed biotite granitoids of high-K calc-alkaline and ferroan composition, which we interpreted as primary magmas (segregated diatexites) derived from the partial melting of crustal material. The close temporal relation of this magmatism with local eclogitic and regional high temperature metamorphism in Ceara Central Domain point out to an orogenic setting, arguably emplaced during the collisional stage. Subordinate coeval juvenile mantle incursions are also present. This crustally derived magmatism is the primary product of the continental thickening that resulted from the collision between the rocks represented by the Amazonian-West African craton (Sao Luiz cratonic fragment) to the northwest and the Paleoproterozoic-Archean basement of the Borborema Province to the southeast along the Transbrasiliano tectonic corridor. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Southern Madagascar is the core of a >1 million km(2) Gondwanan metasedimentary belt that forms much of the southern East African Orogen of eastern Africa, Madagascar, southern India and Sri Lanka. Here the Vohibory Series yielded U-Pb isotopic data from detrital zircon cores that indicate that it was deposited in the latest Tonian to late Cryogenian (between -900 and 640 Ma). The deposition of the Graphite and Androyen Series protoliths is poorly constrained to between the late Palaeoproterozoic and the Cambrian (similar to 1830-530 Ma). The Vohibory Series protoliths were sourced from very restricted-aged sources with a maximum age range between 910 and 760 Ma. The Androyen and Graphite Series protoliths were sourced from Palaeoproterozoic rocks ranging in age between 2300 and 1800 Ma. The best evidence of the timing of metamorphism in the Vohibory Series is a weighted mean Pb-206/U-238 age of 642 +/- 8 Ma from 3 analyses of zircon from sample M03-01. A considerably younger Pb-206/U-238 metamorphic age of 531 +/- 7 Ma is produced from 10 analyses of zircon from sample M03-28 in the Androyen Series. This similar to 110 Ma difference in age is correlated with the early East African Orogeny affecting the west of Madagascar along with its type area in East Africa, whereas the Cambrian Malagasy Orogeny affected the east of Madagascar and southern India during the final suturing of the Mozambique Ocean. (C) 2011 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Dom Feliciano Belt, situated in southernmost Brazil and Uruguay, contains a large mass of granite-gneissic rocks (also known as Florianopolis/Pelotas Batholith) formed during the pre-, syn- and post-orogenic phases of the Brasiliano/Pan-African cycle. In the NE extreme of this granitic mass, pre-, syn- and post-tectonic granites associated with the Major Gercino Shear Zone (MGSZ) are exposed. The granitic manifestation along the MGSZ can be divided into pre-kinematic tonalitic gneisses, peraluminous high-K calcalkaline early kinematic shoshonitic, and metaluminous post-kinematic granites. U-Pb zircon data suggest an age of 649 +/- 10 Ma for the pre-tectonic gneisses, and a time span from 623 +/- 6 Ma to 588 +/- 3 Ma for the early to post-tectonic magmatism. Negative epsilon Hf (t) values ranging from -4.6 to -14.6 and Hf model ages ranging from 1.64 to 2.39 Ga for magmatic zircons coupled with whole rock Nd model ages ranging from 1.24 to 2.05 Ga and epsilon Nd (t) values ranging from -3.84 to -7.50, point to a crustal derivation for the granitic magmatism. The geochemical and isotope data support a continental magmatic arc generated from melting of dominant Paleoproterozoic crust, and a similar evolution for the granitic batholiths of the eastern Dom Feliciano Belt and western Kaoko Belt. (C) 2011 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

New geochronological and geochemical constraints on Precambrian sedimentary and volcanic successions exposed in the western part of the Central Domain of the Borborema Province, NE Brazil, indicate the presence of two distinct tectono-stratigraphic complexes: Riacho Gravata and Sao Caetano. Both complexes and associated orthogneisses are referred in the literature as the Cariris Velhos belt, having depositional, extrusive, or intrusive ages within the interval 985-913 Ma. The Riacho Gravata complex consists of bimodal (but mostly felsic) volcanic and volcanoclastic rocks, muscovite+/-graphite schists, quartzites, and marble with local occurrences of banded-iron-formation. The Sao Caetano complex mainly consists of metagreywackes, marbles, calc-silicate rocks, and rare meta-mafic rocks. Meta-mafic rocks from both complexes have geochemical signatures similar to those of continental flood basalts, with epsilon Nd (1.0 Ga) values ranging from -1.0 to -2.8. Felsic volcanic rocks from the Riacho Gravata complex show epsilon Nd (1.0 Ga) values ranging from -1.0 to -7.4 and geochemical signatures similar to A(2)-type granitoids. New SHRIMP U-Pb zircon data from felsic volcanic rocks within the Riacho Gravata complex yielded ages of 1091 +/- 13 Ma and 996 +/- 13 Ma. In contrast, meta-graywackes from the Sao Caetano complex show a maximum deposition age of ca. 806 Ma in the northern part and ca. 862 Ma in the southern part of the outcrop area. The orthogneisses show epsilon Nd (1.0 Ga) values ranging from 1.0 to -4.2 with U/Pb TIMS and SHRIMP ages ranging from 960 to 926 Ma and geochemical signatures of A(2)-type granitoids. The data reported in this paper suggest at least two periods of extension within the Central Domain of the Borborema Province, the first starts ca. 1091 Ma with magmatism and deposition, creating the Riacho Gravata basin and continued intrusion of A-type granites to 920 Ma. A second rift event, which reactivated old faults, generated a basin with a maximum deposition age of ca. 806 Ma. Furthermore, the oldest granitoids cutting these metasedimentary rocks have crystallization ages of ca. 600 Ma. This suggests that the second rift event could be early Brasiliano in age. The resulting Sao Caetano basin received detritus from a variety of sources, although detritus from the Riacho Gravata complex dominated. Deposition ages of the Riacho Gravata and the Sao Caetano complexes are coeval with deposits in other basins of the Borborema Province (Riacho do Tigre in the Central Domain; Macurure and Maranco in the Sergipano Belt of the Southern domain). The Macaubas Group from SE Brazil and its counterparts in Africa, the Zadanian and Mayumbian Groups, in the western edge of the Congo Craton are also coeval. Closure of the Riacho Gravata and Sao Caetano basins occurred during the Brasiliano convergence (705-600 Ma). During the last stage of convergence, ca. 612 Ma, pull-apart basins were created and filled; final basin closure took place 605-592 Ma, after deposition ceased. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The early phase of post-collisional granitic magmatism in the Camboriu region, south Brazil, is represented by the porphyritic biotite +/- hornblende Rio Pequeno Granite (RPG; 630-620 Ma) and the younger (similar to 610 Ma), equigranular, biotite +/- muscovite Serra dos Macacos Granite (SMG). The two granite types share some geochemical characteristics, but the more felsic SMG constitutes a distinctive group not related to RPG by simple fractionation processes, as indicated by its lower FeOt, TiO2, K2O/Na2O and higher Zr Al2O3, Na2O, Ba and Sr when compared to RPG of similar SiO2 range. Sr-Nd-Pb isotopes require different sources. The SMG derives from old crustal sources, possibly related to the Paleoproterozoic protoliths of the Camboriu Complex, as indicated by strongly negative epsilon Nd-t (-23 to -24) and unradiogenic Pb (e.g., Pb-206/Pb-204 = 16.0-16.3; Pb-207/Pb-204 = 15.3-15.4) and confirmed by previous LA-MC-ICPMS data showing dominant zircon inheritance of Archean to Paleoproterozoic age. In contrast, the RPG shows less negative epsilon Nd-t (-12 to -15) and a distinctive zircon inheritance pattern with no traces of post-1.6 Ga sources. This is indicative of younger sources whose significance in the regional context is still unclear; some contribution of mantle-derived magmas is indicated by coeval mafic dykes and may account for some of the geochemical and isotopic characteristics of the least differentiated varieties of the RPG. The transcurrent tectonics seems to have played an essential role in the generation of mantle-derived magmas despite their emplacement within a low-strain zone. It may have facilitated their interaction with crustal melts which seem to be to a large extent the products of reworking of Paleoproterozoic orthogneisses from the Camboriu Complex. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Final Gondwana amalgamation was marked by the closure of the Neoproterozoic Clymene ocean between the Amazonia craton and central Gondwana. The events which occurred in the last stage of this closure were recorded in the upper Alto Paraguai Group in the foreland of the Paraguay orogen. Outcrop-based fades analysis of the siliciclastic rocks of upper Alto Paraguai Group, composed of the Sepotuba and Diamantino Formations, was carried out in the Diamantino region, within the eastern part of the Barra dos Bugres basin, Mato Grosso state, central-western Brazil. The Sepotuba Formation is composed of sandy shales with planar to wave lamination interbedded with fine-grained sandstone with climbing ripple cross-lamination, planar lamination, swaley cross-stratification and tangential to sigmoidal cross-bedding with mud drapes, related to marine offshore deposits. The lower Diamantino Formation is composed of a monotonous, laterally continuous for hundreds of metres, interbedded siltstone and fine-grained sandstone succession with regular parallel lamination, climbing ripple cross-lamination and ripple-bedding interpreted as distal turbidites. The upper part of this formation consists of fine to medium-grained sandstones with sigmoidal cross-bedding, planar lamination, climbing ripple cross-lamination, symmetrical to asymmetrical and linguoid ripple marks arranged in lobate sand bodies. These fades are interbedded with thick siltstone in coarsening upward large-scale cycles related to a delta system. The Sepotuba Formation characterises the last transgressive deposits of the Paraguay basin representing the final stage of a marine incursion of the Clymene ocean. The progression of orogenesis in the hinterland resulted in the confinement of the Sepotuba sea as a foredeep sub-basin against the edge of the Amazon craton. Turbidites were generated during the deepening of the basin. The successive filling of the basin was associated with progradation of deltaic lobes from the southeast, in a wide lake or a restricted sea that formed after 541 +/- 7 Ma. Southeastern to east dominant Neoproterozoic source regions were confirmed by zircon grains that yielded ages around 600 to 540 Ma, that are interpreted to be from granites in the Paraguay orogen. This overall regressive succession recorded in the Alto Paraguai Group represents the filling up of a foredeep basin after the final amalgamation of westem Gondwana in the earliest Phanerozoic. (C) 2011 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glacigenic diamictite successions of the Macaubas Group are widespread in the western domain of the Aracuai orogen, east of the Sao Francisco craton (Brazil). Diamictites also occur on this craton and in the African counterpart of the Aracuai orogen, the West Congo belt. Detrital zircon grains from the matrix of diamictites and sandstones from the Macaubas Group were dated by the U-Pb SHRIMP technique. The geochronological study sets the maximum depositional age of the glacial diamictites at 900 Ma, and indicates multiple sources for the Macaubas basin with ages ranging from 900 to 2800 Ma. Sm-Nd T-DM model ages, determined on whole rock samples, range from 1.8 Ga to 2.5 Ga and get older up-section. Comparison of our data with those from the cratonic area suggest that these glacial deposits can be correlated to the Jequitai and Carrancas diamictites in the Sao Francisco craton, and to the Lower Mixtite Formation of the West Congolian Group, exposed in Africa. The 900-1000 Ma source is most probably represented by the Zadinian-Mayumbian volcanic rocks and related granites from the West Congo belt. However, one of the most voluminous sources, with ages in the 1.1-1.3 Ga interval, has not been detected in the Sao Francisco-Congo craton. Possible sources for these grains could occur elsewhere in Africa, or possibly from within the Brasilia Belt in western central Brazil. (C) 2011 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The LA-MC-ICP-MS method applied to U-Pb in situ dating is still rapidly evolving due to improvements in both lasers and ICP-MS. To test the validity and reproducibility of the method, 5 different zircon samples, including the standard Temora-2, ranging in age between 2.2 Ga and 246 Ma, were dated using both LA-MC-ICP-MS and SHRIMP. The selected zircons were dated by SHRIMP and, after gentle polishing, the laser spot was driven to the same site or on the same zircon phase with a 213 nm laser microprobe coupled to a multi-collector mixed system. The data were collected with a routine spot size of 25 μm and, in some cases, of 15 and 40 μm. A careful cross-calibration using a diluted U-Th-Pb solution to calculate the Faraday reading to counting rate conversion factors and the highly suitable GJ-1 standard zircon for external calibrations were of paramount importance for obtaining reliable results. All age results were concordant within the experimental errors. The assigned age errors using the LA-MC-ICP-MS technique were, in most cases, higher than those obtained by SHRIMP, but if we are not faced with a high resolution stratigraphy, the laser technique has certain advantages.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chemical abrasion was carried out on zircons grains of the Temora II standard for U-Pb dating prior to analyses using in situ Laser Ablation-MultiCollector Ion Coupled Plasma Mass Spectrometer (LA-ICPMS) followed by the Isotope Dissolution Thermal Ionization Mass Spectrometer (ID-TIMS) method. The proposed methodology was herein applied in order to reduce primarily the effects of secondary Pb loss, the presence of common lead and/or silicate impurities. Nine Temora II zircon grains were analyzed by the laser ablation method yielding an age of 418.3±4.3 Ma. Zircon grains of a same population were separated for chemical abrasion before dissolution and mass spectrometry analyses. Six fractions of them were separated for isotope dissolution using 235U-205Pb mixed spike after we have checked and assured the laboratory conditions of low blank values for total Pb of less than 2 pg/g. The obtained U-Pb zircon age by the ID-TIMS method was 415.7±1.8 Ma (error 0.43 %) based on four successful determinations. The results are consistent with the published ages for the Temora diorite (Temora I â 416.75±1.3 Ma; Temora II â 416.78±0.33 Ma) and established as 416±0.33 Ma. The technique is thus recommended for high precision U-Pb zircon analyses (error < 1 %), mainly for high resolution stratigraphic studies of Phanerozoic sequences.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Admiralty Bay (Antarctica) hosts three scientific stations (Ferraz, Arctowski and Macchu Picchu), which require the use of fossil fuel as an energy source. Fossil fuels are also considered the main source of pollution in the area, representing important inputs of major pollutants (organic compounds) and trace metals and metalloids of environmental interest. Accordingly, this work presents the results of As, Cd, Cr, Cu, Ni, Pb and Zn in sediment profiles from Admiralty Bay. The sediment results from Ferraz station were slightly higher than the other sampling sites. The highest contents were observed for Cu and Zn (from 44 to 89 mg kg(-1)). Otherwise, by using enrichment factors and geochronology analysis, the most relevant enrichment was observed for As in the samples collected close to the Ferraz station, indicating that increasing As content may be associated with the activities associated with this site. Published by Elsevier Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present field relationships, major and trace element geochemistry and U-Pb SHRIMP and ID-TIMS geochronology of the A-type Ordovician Quintas pluton located in the Ceara Central Domain of the Borborema Province, in northeastern Brazil. This pluton presents a concentric geometry and is composed mainly of syenogranite, monzogranite, quartz syenite to quartz monzodiorite, monzogabbro and diorite. Its geochemical characteristics [SiO2 (52-70%), Na2O/K2O (1.55-0.65), Fe2O3/MgO (2.2-7.3), metaluminous to sligthly alkaline affinity, post-collisional type in (Y + Nb) x Rb diagram, and A-type affinity (Ga > 22 ppm, Nb > 20 ppm, Zn > 60 ppm), REE fractioned pattern with negative Eu anomaly] are coherent with post-collisional A(2)-type granitoids. However, the emplacement of this pluton is to some extent temporally associated with the deposition of the first strata of the Parnaiba intracratonic basin, attesting also to a purely anorogenic character (A(1)-type granitoid). The emplacement of this pluton is preceded by one of the largest known orogenesis of the planet (Neoproterozoic Pan-African/Brasiliano) and, if it is classified as an A(2)-type granitoid, it provides interesting constraints about how long can last A(2)-type magmatic activity after a major collisional episode, arguably triggered by disturbance of the underlying mantle, a topic extensively debated in the geoscience community. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Subduction zones are one of the most characteristic features of planet Earth. Convergent plate junctions exert enormous influence on the formation and recycling of continental crust, and they are also responsible for major mineral resources and earthquakes, which are of crucial importance for society. A subduction-related geologic unit containing high-pressure rocks occurs in the Barragan area (Valle del Cauca Department) on the western flank of the Central Cordillera of the Colombian Andes. Blueschists and amphibolites, serpentinized meta-ultramafic rocks, graphite-chlorite-muscovite-quartz schists, protocataclasites, and graphite-chlorite-andalusite-andesine-garnet-muscovite +/- titanite schists are exposed in this region. In spite of the petrotectonic importance of blueschists, the high-pressure metamorphism of the Central Cordillera of Colombia has been rarely studied. New geochemical data indicate that protoliths of the blueschist- and amphibolite-facies rocks possessed normal mid-ocean ridge basalt bulk compositions. Ar-40/Ar-39 geochronology for a metapelite rock associated with the blueschists shows a plateau age of similar to 120 million years. We suggest that high-P/T conditions were present from similar to 150 to 125 Ma, depending on the model of generation and exhumation considered.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Impact cratering has been a fundamental geological process in Earth history with major ramifications for the biosphere. The complexity of shocked and melted rocks within impact structures presents difficulties for accurate and precise radiogenic isotope age determination, hampering the assessment of the effects of an individual event in the geological record. We demonstrate the utility of a multi-chronometer approach in our study of samples from the 40 km diameter Araguainha impact structure of central Brazil. Samples of uplifted basement granite display abundant evidence of shock deformation, but U/Pb ages of shocked zircons and the Ar-40/Ar-39 ages of feldspar from the granite largely preserve the igneous crystallization and cooling history. Mixed results are obtained from in situ Ar-40/Ar-39 spot analyses of shocked igneous biotites in the granite, with deformation along kink-bands resulting in highly localized, partial resetting in these grains. Likewise, spot analyses of perlitic glass from pseudotachylitic breccia samples reflect a combination of argon inheritance from wall rock material, the age of the glass itself, and post-impact devitrification. The timing of crater formation is better assessed using samples of impact-generated melt rock where isotopic resetting is associated with textural evidence of melting and in situ crystallization. Granular aggregates of neocrystallized zircon form a cluster of ten U-Pb ages that yield a "Concordia" age of 247.8 +/- 3.8 Ma. The possibility of Pb loss from this population suggests that this is a minimum age for the impact event. The best evidence for the age of the impact comes from the U-Th-Pb dating of neocrystallized monazite and Ar-40/Ar-39 step heating of three separate populations of post-impact, inclusion-rich quartz grains that are derived from the infill of miarolitic cavities. The Pb-206/U-238 age of 254.5 +/- 3.2 Ma (2 sigma error) and Pb-208/Th-232 age of 255.2 +/- 4.8 Ma (2 sigma error) of monazite, together with the inverse, 18 point isochron age of 254 +/- 10 Ma (MSWD = 0.52) for the inclusion-rich quartz grains yield a weighted mean age of 254.7 +/- 2.5 Ma (0.99%, 2 sigma error) for the impact event. The age of the Araguainha crater overlaps with the timing of the Permo-Triassic boundary, within error, but the calculated energy released by the Araguainha impact is insufficient to be a direct cause of the global mass extinction. However, the regional effects of the Araguainha impact event in the Parana-Karoo Basin may have been substantial. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Neoproterozoic post-collisional period in southern Brazil (650-580 Ma) is characterized by substantial volumes of magma emplaced along the active shear zones that compose the Southern Brazilian Shear Belt. The early-phase syntectonic magmatism (630-610 Ma) is represented by the porphyritic, high-K, metaluminous to peraluminous Quatro Ilhas Granitoids and the younger heterogranular, slightly peraluminous Mariscal Granite. Quatro II has Granitoids include three main petrographic varieties (muscovite-biotite granodiorite mbg; biotite monzogranite - bmz: and leucogranite - lcg) that, although sharing some significant geochemical characteristics, are not strictly comagmatic, as shown by chemical and Sr-Nd-Pb isotope data. The most primitive muscovite-biotite granodiorite was produced by contamination of more mafic melts (possibly with some mantle component) with peraluminous crustal melts; the biotite monzogranite, although more felsic, has higher Ca, MgO,TiO2 and Ba, and lower K2O, FeOt, Sr and Rb contents, possibly reflecting some mixing with coeval mafic magmas of tholeiitic affinity; the leucogranite may be derived from pure crustal melts. The Mariscal Granite is formed by two main granite types which occur intimately associated in the same pluton, one with higher K (5-6.5 wt.% K2O) high Rb and lower CaO, Na2O, Ba and Zr as compared to the other (3-5 wt.% of K2O). The two Mariscal Granite varieties have compositional correspondence with fine-grained granites (fgg) that occur as tabular bodies which intruded the Quatro Ilhas Granoitoids before they were fully crystallized, and are inferred to correspond to the Mariscal Granite feeders, an interpretation that is reinforced by similar U-Pb zircon crystallization ages. The initial evolution of the post-collisional magmatism, marked by the emplacement of the Quatro Ilhas Granitoids varieties, activated sources that produced mantle and crustal magmas whose emplacement was controlled both by flat-lying and transcurrent structures. The transition from thrust to transcurrent-related tectonics coincides with the increase in the proportion of crustal-derived melts. The transcurrent tectonics seems to have played an essential role in the generation of mantle-derived magmas and may have facilitated their interaction with crustal melts which seem to be to a large extent the products of reworking of orthogneiss protoliths. (C) 2012 Elsevier B.V. All rights reserved.