11 resultados para yeast one-hybrid

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

80.00% 80.00%

Publicador:

Resumo:

ComN (YrzD) is a small, 98-amino-acid protein recently shown to be involved in the posttranscriptional control of the late competence comE operon in Bacillus subtilis. We show here that ComN localizes to the division site and cell poles in a DivIVA-dependent fashion. Yeast two-hybrid and glutathione S-transferase pulldown experiments showed that ComN interacts directly with DivIVA. ComN is not essential for the polar assembly of the core competence DNA uptake machinery. Nevertheless, polar localization of ComN should play some role in competence acquisition because delocalization of ComN leads to a small reduction in competence efficiency. We found that ComN promotes the accumulation of its target comE mRNA to septal and polar sites. Thus, we speculate that localized translation of ComE proteins may be required for efficient competence development. Our results underscore the versatility of DivIVA as a promoter of the differentiation of bacterial poles and demonstrate that the repertoire of polarly localized molecules in B. subtilis is broad, including a regulator of gene expression and its target mRNA. Moreover, our findings suggest that mRNA localization may play a role in the subcellular organization of bacteria.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Xanthomonas axonopodis pv. citri, the bacterium responsible for citrus canker, uses effector proteins secreted by a type III protein secretion system to colonize its hosts. Among the putative effector proteins identified for this bacterium, we focused on the analysis of the roles of AvrXacE1, AvrXacE2 and Xac3090 in pathogenicity and their interactions with host plant proteins. Bacterial deletion mutants in avrXacE1, avrXacE2 and xac3090 were constructed and evaluated in pathogenicity assays. The avrXacE1 and avrXacE2 mutants presented lesions with larger necrotic areas relative to the wild-type strain when infiltrated in citrus leaves. Yeast two-hybrid studies were used to identify several plant proteins likely to interact with AvrXacE1, AvrXacE2 and Xac3090. We also assessed the localization of these effector proteins fused to green fluorescent protein in the plant cell, and observed that they co-localized to the subcellular spaces in which the plant proteins with which they interacted were predicted to be confined. Our results suggest that, although AvrXacE1 localizes to the plant cell nucleus, where it interacts with transcription factors and DNA-binding proteins, AvrXacE2 appears to be involved in lesion-stimulating disease 1-mediated cell death, and Xac3090 is directed to the chloroplast where its function remains to be clarified.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Os objetivos deste trabalho foram determinar o controle genético da eficiência no uso do nitrogênio (EUN), identificar a importância das eficiências na absorção (EAN) e na utilização (EUtN) na sua composição,  e quantificar relação entre produção de matéria seca da parte aérea (MPS) e do sistema radicular com a EUN e  com seus componentes. Foram avaliadas 41 combinações híbridas em duas disponibilidades de N: baixa (BN)  e alta (AN). Utilizou-se o delineamento de blocos ao acaso com duas repetições, em arranjo fatorial simples  (combinação híbrida x disponibilidade de N). As análises estatísticas foram realizadas por meio das equações  de modelos mistos. Correlações de elevada magnitude foram detectadas entre EAN e EUN, bem como entre  essas eficiências e a MPS, tanto em BN como em AN. Em ambas as disponibilidades de N, efeitos genéticos  aditivos apresentaram maior importância para os caracteres associados à EUN. Dessa forma, a seleção baseada  no desempenho individual de linhagens quanto à MPS pode possibilitar a obtenção de genótipos com alta  EUN. Independentemente da disponibilidade de N, a EAN é o componente mais importante da EUN.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

2-Cys peroxiredoxin (Prx) enzymes are ubiquitously distributed peroxidases that make use of a peroxidatic cysteine (Cys(P)) to decompose hydroperoxides. A disulfide bond is generated as a consequence of the partial unfolding of the alpha-helix that contains Cys(P). Therefore, during its catalytic cycle, 2-Cys Prx alternates between two states, locally unfolded and fully folded. Tsa1 (thiol-specific antioxidant protein 1 from yeast) is by far the most abundant Cys-based peroxidase in Saccharomyces cerevisiae. In this work, we present the crystallographic structure at 2.8 angstrom resolution of Tsa1(C47S) in the decameric form [(alpha(2))(5)] with a DTT molecule bound to the active site, representing one of the few available reports of a 2-Cys Prx (AhpC-Prx1 subfamily) (AhpC, alkyl hydroperoxide reductase subunit C) structure that incorporates a ligand. The analysis of the Tsa1(C47S) structure indicated that G1u50 and Arg146 participate in the stabilization of the Cys(P) alpha-helix. As a consequence, we raised the hypothesis that G1u50 and Arg146 might be relevant to the Cys(P) reactivity. Therefore, Tsa1(E50A) and Tsa1(R146Q) mutants were generated and were still able to decompose hydrogen peroxide, presenting a second-order rate constant in the range of 10(6) M-1 S-1. Remarkably, although Tsa1(E50A) and Tsa1(R146Q) were efficiently reduced by the low-molecular-weight reductant DTT, these mutants displayed only marginal thioredoxin (Trx)-dependent peroxidase activity, indicating that G1u50 and Arg146 are important for the Tsa1-Trx interaction. These results may impact the comprehension of downstream events of signaling pathways that are triggered by the oxidation of critical Cys residues, such as Trx. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Protein folding, refolding and degradation are essential for cellular life and are regulated by protein homeostatic processes such those that involve the molecular chaperone DnaK/Hsp70 and its co-chaperone DnaJ. Hsp70 action is initiated when proteins from the DnaJ family bind an unfolded protein for delivery purposes. In eukaryotes, the DnaJ family can be divided into two main groups, Type I and Type II, represented by yeast cytosolic Ydj1 and Sis1, respectively. Although sharing some unique features both members of the DnaJ family, Ydj1 and Sis1 are structurally and functionally distinct as deemed by previous studies, including the observation that their central domains carry the structural and functional information even in switched chimeras. In this study, we combined several biophysical tools for evaluating the stability of Sis1 and mutants that had the central domains (named Gly/Met rich domain and C-terminal Domain I) deleted or switched to those of Ydj1 to gain insight into the role of these regions in the structure and function of Sis1. The mutants retained some functions similar to full length wild-type Sis1, however they were defective in others. We found that: 1) Sis1 unfolds in at least two steps as follows: folded dimer to partially folded monomer and then to an unfolded monomer. 2) The Gly/Met rich domain had intrinsically disordered characteristics and its deletion had no effect on the conformational stability of the protein. 3) The deletion of the C-terminal Domain I perturbed the stability of the dimer. 4) Exchanging the central domains perturbed the conformational stability of the protein. Altogether, our results suggest the existence of two similar subdomains in the C-terminal domain of DnaJ that could be important for stabilizing each other in order to maintain a folded substrate-binding site as well as the dimeric state of the protein.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Solvent effects on the one- and two-photon absorption (IPA and 2PA) of disperse orange 3 (DO3) in dimethyl sulfoxide (DMSO) are studied using a discrete polarizable embedding (PE) response theory. The scheme comprises a quantum region containing the chromophore and an atomically granulated classical region for the solvent accounting for full interactions within and between the two regions. Either classical molecular dynamics (MD) or hybrid Car-Parrinello (CP) quantum/classical (QM/MM) molecular dynamics simulations are employed to describe the solvation of DO3 in DMSO, allowing for an analysis of the effect of the intermolecular short-range repulsion, long-range attraction, and electrostatic interactions on the conformational changes of the chromophore and also the effect of the solute-solvent polarization. PE linear response calculations are performed to verify the character, solvatochromic shift, and overlap of the two lowest energy transitions responsible for the linear absorption spectrum of DO3 in DMSO in the visible spectral region. Results of the PE linear and quadratic response calculations, performed using uncorrelated solute-solvent configurations sampled from either the classical or hybrid CP QM/MM MD simulations, are used to estimate the width of the line shape function of the two electronic lowest energy excited states, which allow a prediction of the 2PA cross-sections without the use of empirical parameters. Appropriate exchange-correlation functionals have been employed in order to describe the charge-transfer process following the electronic transitions of the chromophore in solution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This communication reports a promising platform for rapid, simple, direct, and ultrasensitive determination of serotonin. The method is related to integration of vertically aligned single-walled carbon nanotubes (SWCNTs) in electrochemical microfluidic devices. The required microfabrication protocol is simple and fast. In addition, the nanomaterial influenced remarkably the obtained limit-of-detection (LOD) values. Our system achieved a LOD of 0.2 nmol L-1 for serotonin, to the best of our knowledge one of the lowest values reported in the literature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The combination of semiconducting oxides and polyaniline in the nanoscale range may result in hybrid materials having enhanced properties, such as electrochromism and charge capacity. This paper reports the spectroscopic, morphological and electrochromic characterization of hybrid films made up of hexaniobate one-dimensional (1D) nanoscrolls and polyaniline prepared by the layer-by-layer assembly technique (LbL). Secondary electron imaging and backscattered electron imaging techniques performed using a scanning electron microscope showed that polyaniline is adsorbed on the hexaniobate nanoscrolls, which confirms the combination of the components in the nanoscale domain. UV-VIS-NIR electronic spectra of the LbL hybrid films showed the absorption tail in the NIR region, assigned to delocalized polarons of the polyaniline. Resonance Raman spectra in the 1000-1700 cm(-1) range indicated that hybrid films present a higher relative intensity of polaron bands at 1337 and 1508 cm(-1) than pristine polyaniline in the emeraldine salt form. These results suggest that hexaniobate nanoscrolls induce a secondary doping of polyaniline. The cyclic voltammetry (CV) data for the hybrid film showed a specific capacity of 870 C cm(-3). According to CV results, the synergistic effect on charge storage properties of the hybrid material is attributed to the enhanced electroactivity of the hexaniobate component in the LbL film. Spectroelectrochemical experiments showed that the electrochromic efficiencies at 420 nm are ca. -41 and 24 cm(2) C-1 as the potential changes from 0.8 to -0.9 V and from -0.9 to -1.8 V, respectively, whereas at 800 nm the efficiencies are ca. -55 and 8 cm(2) C-1 for the same potential ranges. The electrochromic efficiencies and multi-colour character of the LbL film of hexaniobate nanoscrolls and polyaniline indicate that this novel hybrid material is an interesting modified electrode for electrochromic devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The flower industry represents about one billion dollars in Brazil and the development of techniques aimed at flowering control is required. This study evaluated the influence of gibberellic acid (GA3) on the vegetative and reproductive development of young plants of Phalaenopsis FSNT 'Dai-Itigo' hybrid pink color. The application of GA3 was made by foliar sprays at concentrations of 0, 125, 250, 500 and 1,000 mg L -1. The length of leaves increased significantly when using GA3 at low concentrations, but leaf width decreased. The application of GA3 at 125 mg L -1 showed the best results for the promotion of flowering and flower quality of this orchid hybrid. In this treatment, about 50% of plants treated with GA3 flowered about 6-12 months before the plants that were non-treated with this plant growth regulator. The quality of flowering and flowers was best with 125 mg L -1 GA3.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ceratitis capitata is one of the most important pests of fruits for exportation, and Sterile Insect Technique (SIT) has been the most efficient and environmental friendly technique used to control fruit fly populations around the world. A key goal in achieving a successful SIT program is a mass rearing system producing high quality insects at low cost. Providing adults with an artificial diet containing hydrolysed protein has been the major obstacle for bio-production facilities in Brazil, because it is expensive and has to be imported. Two other commercial products, autolysed yeast (AY) and yeast extract (YE), of domestic origin and low cost, were tested as substitutes of the imported hydrolyzed protein. To compare their efficiency we observed the female fecundity, adult survival and egg viability of flies raised on diets containing one of each of the different protein products. Flies reared on the domestic yeast products had equivalent or superior performance to the flies reared on imported protein. Both AY and YE can be a possible substitute for imported hydrolyzed protein for C. capitata mass-rearing, as they are cheaper and are readily available in the national market.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study was developed a natural process using a biological system for the biosynthesis of nanoparticles (NPs) and possible removal of copper from wastewater by dead biomass of the yeast Rhodotorula mucilaginosa. Dead and live biomass of Rhodotorula mucilaginosa was used to analyze the equilibrium and kinetics of copper biosorption by the yeast in function of the initial metal concentration, contact time, pH, temperature, agitation and inoculum volume. Dead biomass exhibited the highest biosorption capacity of copper, 26.2 mg g(-1), which was achieved within 60 min of contact, at pH 5.0, temperature of 30°C, and agitation speed of 150 rpm. The equilibrium data were best described by the Langmuir isotherm and Kinetic analysis indicated a pseudo-second-order model. The average size, morphology and location of NPs biosynthesized by the yeast were determined by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and transmission electron microscopy (TEM). The shape of the intracellularly synthesized NPs was mainly spherical, with an average size of 10.5 nm. The X-ray photoelectron spectroscopy (XPS) analysis of the copper NPs confirmed the formation of metallic copper. The dead biomass of Rhodotorula mucilaginosa may be considered an efficiently bioprocess, being fast and low-cost to production of copper nanoparticles and also a probably nano-adsorbent of this metal ion in wastewater in bioremediation process