2 resultados para witch

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present work aimed to evaluate the seasonal increment in diameter of Eucalyptus grandis trees for 24 months and its relationship with the climatic variables and fertilization with nitrogen and with sewer mud. The trees were planted in the spacing of 3 x 2 m and fertilized with nitrogen (planting, 6, 12, 18 months) and sewer mud (planting and 8 months). 20 trees were selected by treatment according witch the distribution of basal area and installed dendrometer bands at a 1.3 meter. The results showed a clear effect of the climatic variables on the seasonal increment in diameter of trees, being observed a delay period (lag) of 28 days for the answer of the trees in relation to the climatic variables. Regading to the fertilization effect, it was observed that the increment of trunk diameter was higher in the eucalypt trees with organic in relation to mineral fertilization with nitrogen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The pulmonary crackling and the formation of liquid bridges are problems that for centuries have been attracting the attention of scientists. In order to study these phenomena, it was developed a canonical cubic lattice-gas­ like model to explain the rupture of liquid bridges in lung airways [A. Alencar et al., 2006, PRE]. Here, we further develop this model and add entropy analysis to study thermodynamic properties, such as free energy and force. The simulations were performed using the Monte Carlo method with Metropolis algorithm. The exchange between gas and liquid particles were performed randomly according to the Kawasaki dynamics and weighted by the Boltzmann factor. Each particle, which can be solid (s), liquid (l) or gas (g), has 26 neighbors: 6 + 12 + 8, with distances 1, √2 and √3, respectively. The energy of a lattice's site m is calculated by the following expression: Em = ∑k=126 Ji(m)j(k) in witch (i, j) = g, l or s. Specifically, it was studied the surface free energy of the liquid bridge, trapped between two planes, when its height is changed. For that, was considered two methods. First, just the internal energy was calculated. Then was considered the entropy. It was fond no difference in the surface free energy between this two methods. We calculate the liquid bridge force between the two planes using the numerical surface free energy. This force is strong for small height, and decreases as the distance between the two planes, height, is increased. The liquid-gas system was also characterized studying the variation of internal energy and heat capacity with the temperature. For that, was performed simulation with the same proportion of liquid and gas particle, but different lattice size. The scale of the liquid-gas system was also studied, for low temperature, using different values to the interaction Jij.