2 resultados para wavefront steepness

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: To assess corneal wavefront-guided photorefractive keratectomy (PRK) to correct hyperopia after radial keratotomy (RK). SETTING: Sadalla Amin Ghanem Eye Hospital, Joinville, Santa Catarina, Brazil. DESIGN: Case series. METHODS: Excimer laser corneal wavefront-guided PRK with intraoperative mitomycin-C (MMC) 0.02% was performed. Main outcome measures were uncorrected (UDVA) and corrected (CDVA) distance visual acuities, spherical equivalent (SE), corneal aberrations, and haze. RESULTS: The mean time between RK and PRK in the 61 eyes (39 patients) was 18.8 years +/- 3.8 (SD). Before PRK, the mean SE was +4.17 +/- 1.97 diopters (D); the mean astigmatism, -1.39 +/- 1.04 D; and the mean CDVA, 0.161 +/- 0.137 logMAR. At 24 months, the mean values were 0.14 +/- 0.99 D (P<.001), -1.19 +/- 1.02 D (P=.627), and 0.072 +/- 0.094 logMAR (P<.001), respectively; the mean UDVA was 0.265 +/- 0.196 (P<.001). The UDVA was 20/25 or better in 37.7% of eyes and 20/40 or better in 68.9%. The CDVA improved by 1 or more lines in 62.3% of eyes. Two eyes (3.3%) lost 2 or more lines, 1 due to corneal ectasia. Thirty eyes (49.2%) were within +/- 0.50 D of intended SE and 45 (73.8%) were within +/- 1.00 D. From 6 to 24 months, the mean SE regression was +0.39 D (P<.05). A significant decrease in coma, trefoil, and spherical aberration occurred. Three eyes developed peripheral haze more than grade 1. CONCLUSION: Corneal wavefront-guided PRK with MMC for hyperopia after RK significantly improved UDVA, CDVA, and higher-order corneal aberrations with a low incidence of visually significant corneal haze.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mach number and thermal effects on the mechanisms of sound generation and propagation are investigated in spatially evolving two-dimensional isothermal and non-isothermal mixing layers at Mach number ranging from 0.2 to 0.4 and Reynolds number of 400. A characteristic-based formulation is used to solve by direct numerical simulation the compressible Navier-Stokes equations using high-order schemes. The radiated sound is directly computed in a domain that includes both the near-field aerodynamic source region and the far-field sound propagation. In the isothermal mixing layer, Mach number effects may be identified in the acoustic field through an increase of the directivity associated with the non-compactness of the acoustic sources. Baroclinic instability effects may be recognized in the non-isothermal mixing layer, as the presence of counter-rotating vorticity layers, the resulting acoustic sources being found less efficient. An analysis based on the acoustic analogy shows that the directivity increase with the Mach number can be associated with the emergence of density fluctuations of weak amplitude but very efficient in terms of noise generation at shallow angle. This influence, combined with convection and refraction effects, is found to shape the acoustic wavefront pattern depending on the Mach number.