2 resultados para vipi cril

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objective: To evaluate the Vickers hardness of different acrylic resins for denture bases with and without the addition of glass fibres. Background: It has been suggested that different polymerisation methods, as well as the addition of glass fibre (FV) might improve the hardness of acrylic. Materials and methods: Five types of acrylic resin were tested: Vipi Wave (VW), microwave polymerisation; Vipi Flash (VF), auto-polymerisation; Lucitone (LT), QC20 (QC) and Vipi Cril (VC), conventional heat-polymerisation, all with or without glass fibre reinforcement (GFR) and distributed into 10 groups (n = 12). Specimens were then submitted to Vickers hardness testing with a 25-g load for 30 s. All data were submitted to ANOVA and Tukey's HSD test. Results: A significant statistical difference was observed with regard to the polymerisation method and the GFR (p < 0.05). Without the GFR, the acrylic resin VC presented the highest hardness values, and VF and LT presented the lowest. In the presence of GFR, VC resin still presented the highest Vickers hardness values, and VF and QC presented the lowest. Conclusions: The acrylic resin VC and VW presented higher hardness values than VF and QC resins. Moreover, GFR increased the Vickers hardness of resins VW, VC and LT.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study evaluated Knoop hardness, surface roughness and color alteration of artificial teeth for dentures after immersion in water, 1% sodium hypochlorite and an experimental solution of 2% Ricinus communis (RC). Thirty specimens of Vipi, Biolux and Trilux were analyzed. Tests of Knoop hardness, surface roughness and color alteration were conducted immediately after specimen preparation (T0) and after two immersion protocols for 15 days (ΔT15) and 183 days (ΔT183). Data variation (ΔT) were subjected to ANOVA and Tukey's test (p<0.05). At ΔT15, Vipi presented hardness increase and Biolux presented the highest variation (p=0.01). RC caused the highest increase in hardness (p=0) and the lowest increase (p=0.005) in roughness. Biolux presented the lowest color alteration (p =0). At ΔT183, Trilux underwent the highest hardness variation (p=0). Biolux presented an increase in roughness (p=0). There was no significant differences in color alteration among the artificial teeth (p=0.06) and among solutions (p=0.08) after 183 days of immersion. All solutions (distilled water, 1% sodium hypochlorite and 2% RC) caused alterations on the analyzed properties. Both immersion protocols caused alterations on the analyzed properties.