3 resultados para ventilatory control

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The periaqueductal gray (PAG) is a midbrain structure directly involved in the modulation of defensive behaviors. It has direct projections to several central nuclei that are involved in cardiorespiratory control. Although PAG stimulation is known to elicit respiratory responses, the role of the PAG in the CO2-drive to breathe is still unknown. The present study assessed the effect of chemical lesion of the dorsolateral and dorsomedial and ventrolateral/lateral PAG (dlPAG, dmPAG, and vPAG, respectively) on cardiorespiratory and thermal responses to hypercapnia. Ibotenic acid (IBO) or vehicle (PBS, Sham group) was injected into the dlPAG, dmPAG, or vPAG of male Wistar rats. Rats with lesions outside the dlPAG, dmPAG, or vPAG were considered as negative controls (NC). Pulmonary ventilation (Ve), mean arterial pressure (MAP), heart rate (HR), and body temperature (Tb) were measured in unanesthetized rats during normocapnia and hypercapnic exposure (5, 15, 30 min, 7 % CO2). IBO lesioning of the dlPAG/dmPAG caused 31 % and 26.5 % reductions of the respiratory response to CO2 (1,094.3 +/- 115 mL/kg/min) compared with Sham (1,589.5 +/- 88.1 mL/kg/min) and NC groups (1,488.2 +/- 47.7 mL/kg/min), respectively. IBO lesioning of the vPAG caused 26.6 % and 21 % reductions of CO2 hyperpnea (1,215.3 +/- 108.6 mL/kg/min) compared with Sham (1,657.3 +/- 173.9 mL/kg/min) and NC groups (1,537.6 +/- 59.3). Basal Ve, MAP, HR, and Tb were not affected by dlPAG, dmPAG, or vPAG lesioning. The results suggest that dlPAG, dmPAG, and vPAG modulate hypercapnic ventilatory responses in rats but do not affect MAP, HR, or Tb regulation in resting conditions or during hypercapnia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The medullary raphe (MR) is a putative central chemoreceptor site, contributing to hypercapnic respiratory responses elicited by changes in brain PCO2/pH. Purinergic mechanisms in the central nervous system appear to contribute to central chemosensitivity. To further explore the role of P2 receptors within the rostral and caudal MR in relation to respiratory control in room air and hypercapnic conditions, we performed microinjections of PPADS, a non-selective P2X antagonist, in conscious rats. Microinjections of PPADS into the rostral or caudal MR produced no changes in the respiratory frequency, tidal volume and ventilation in room air condition. The ventilatory response to hypercapnia was attenuated after microinjection of PPADS into the rostral but not in the caudal MR when compared to the control group (vehicle microinjection). These data suggest that P2X receptors in the rostral MR contribute to the ventilatory response to CO2, but do not participate in the tonic maintenance of ventilation under room air condition in conscious rats. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ventilation rate (VR) of an ostariophysan fish, the speckled catfish Pseudoplaty - stoma coruscans, exposed to a chemical alarm cue was measured in the present study in multiple contexts. The influence of the extraction techniques, skin donor food intake and quantity of the alarm cue (skin extract) on this autonomic response was considered. Overall, the catfish VR decreased significantly when exposed to the skin extract (chemical alarm cue) compared with exposure to distilled water (control). No effect of the extraction technique was found. Increasing doses of the skin extract induced a VR reduction of similar magnitude. However, extract obtained from daily-fed fish induced a significant decrease in the VR, whereas extract obtained from foodrestricted fish did not induce any change in the VR. Thus, food intake was associated with the production of a more easily recognizable alarm cue in the speckled catfish. Interestingly, this effect was not related to differences in the number of club cells in the donor catfish epidermis. Dashing, or rapid swimming, a normal component of the alarm response in fish, including this catfish species, was not observed here, and hypoventilation was always associated with no swimming reaction. Together, these results suggest that hypoventilation is a reaction to a chemical alarm cue, likely resulting in improved crypsis, causing the fish to become less easily perceived by a potential predator that usually strikes prey in response to movement.