7 resultados para user data

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Abstract Background Several mathematical and statistical methods have been proposed in the last few years to analyze microarray data. Most of those methods involve complicated formulas, and software implementations that require advanced computer programming skills. Researchers from other areas may experience difficulties when they attempting to use those methods in their research. Here we present an user-friendly toolbox which allows large-scale gene expression analysis to be carried out by biomedical researchers with limited programming skills. Results Here, we introduce an user-friendly toolbox called GEDI (Gene Expression Data Interpreter), an extensible, open-source, and freely-available tool that we believe will be useful to a wide range of laboratories, and to researchers with no background in Mathematics and Computer Science, allowing them to analyze their own data by applying both classical and advanced approaches developed and recently published by Fujita et al. Conclusion GEDI is an integrated user-friendly viewer that combines the state of the art SVR, DVAR and SVAR algorithms, previously developed by us. It facilitates the application of SVR, DVAR and SVAR, further than the mathematical formulas present in the corresponding publications, and allows one to better understand the results by means of available visualizations. Both running the statistical methods and visualizing the results are carried out within the graphical user interface, rendering these algorithms accessible to the broad community of researchers in Molecular Biology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In [1], the authors proposed a framework for automated clustering and visualization of biological data sets named AUTO-HDS. This letter is intended to complement that framework by showing that it is possible to get rid of a user-defined parameter in a way that the clustering stage can be implemented more accurately while having reduced computational complexity

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Content-based image retrieval is still a challenging issue due to the inherent complexity of images and choice of the most discriminant descriptors. Recent developments in the field have introduced multidimensional projections to burst accuracy in the retrieval process, but many issues such as introduction of pattern recognition tasks and deeper user intervention to assist the process of choosing the most discriminant features still remain unaddressed. In this paper, we present a novel framework to CBIR that combines pattern recognition tasks, class-specific metrics, and multidimensional projection to devise an effective and interactive image retrieval system. User interaction plays an essential role in the computation of the final multidimensional projection from which image retrieval will be attained. Results have shown that the proposed approach outperforms existing methods, turning out to be a very attractive alternative for managing image data sets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The attributes describing a data set may often be arranged in meaningful subsets, each of which corresponds to a different aspect of the data. An unsupervised algorithm (SCAD) that simultaneously performs fuzzy clustering and aspects weighting was proposed in the literature. However, SCAD may fail and halt given certain conditions. To fix this problem, its steps are modified and then reordered to reduce the number of parameters required to be set by the user. In this paper we prove that each step of the resulting algorithm, named ASCAD, globally minimizes its cost-function with respect to the argument being optimized. The asymptotic analysis of ASCAD leads to a time complexity which is the same as that of fuzzy c-means. A hard version of the algorithm and a novel validity criterion that considers aspect weights in order to estimate the number of clusters are also described. The proposed method is assessed over several artificial and real data sets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dimensionality reduction is employed for visual data analysis as a way to obtaining reduced spaces for high dimensional data or to mapping data directly into 2D or 3D spaces. Although techniques have evolved to improve data segregation on reduced or visual spaces, they have limited capabilities for adjusting the results according to user's knowledge. In this paper, we propose a novel approach to handling both dimensionality reduction and visualization of high dimensional data, taking into account user's input. It employs Partial Least Squares (PLS), a statistical tool to perform retrieval of latent spaces focusing on the discriminability of the data. The method employs a training set for building a highly precise model that can then be applied to a much larger data set very effectively. The reduced data set can be exhibited using various existing visualization techniques. The training data is important to code user's knowledge into the loop. However, this work also devises a strategy for calculating PLS reduced spaces when no training data is available. The approach produces increasingly precise visual mappings as the user feeds back his or her knowledge and is capable of working with small and unbalanced training sets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Background Transcript enumeration methods such as SAGE, MPSS, and sequencing-by-synthesis EST "digital northern", are important high-throughput techniques for digital gene expression measurement. As other counting or voting processes, these measurements constitute compositional data exhibiting properties particular to the simplex space where the summation of the components is constrained. These properties are not present on regular Euclidean spaces, on which hybridization-based microarray data is often modeled. Therefore, pattern recognition methods commonly used for microarray data analysis may be non-informative for the data generated by transcript enumeration techniques since they ignore certain fundamental properties of this space. Results Here we present a software tool, Simcluster, designed to perform clustering analysis for data on the simplex space. We present Simcluster as a stand-alone command-line C package and as a user-friendly on-line tool. Both versions are available at: http://xerad.systemsbiology.net/simcluster. Conclusion Simcluster is designed in accordance with a well-established mathematical framework for compositional data analysis, which provides principled procedures for dealing with the simplex space, and is thus applicable in a number of contexts, including enumeration-based gene expression data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background The use of the knowledge produced by sciences to promote human health is the main goal of translational medicine. To make it feasible we need computational methods to handle the large amount of information that arises from bench to bedside and to deal with its heterogeneity. A computational challenge that must be faced is to promote the integration of clinical, socio-demographic and biological data. In this effort, ontologies play an essential role as a powerful artifact for knowledge representation. Chado is a modular ontology-oriented database model that gained popularity due to its robustness and flexibility as a generic platform to store biological data; however it lacks supporting representation of clinical and socio-demographic information. Results We have implemented an extension of Chado – the Clinical Module - to allow the representation of this kind of information. Our approach consists of a framework for data integration through the use of a common reference ontology. The design of this framework has four levels: data level, to store the data; semantic level, to integrate and standardize the data by the use of ontologies; application level, to manage clinical databases, ontologies and data integration process; and web interface level, to allow interaction between the user and the system. The clinical module was built based on the Entity-Attribute-Value (EAV) model. We also proposed a methodology to migrate data from legacy clinical databases to the integrative framework. A Chado instance was initialized using a relational database management system. The Clinical Module was implemented and the framework was loaded using data from a factual clinical research database. Clinical and demographic data as well as biomaterial data were obtained from patients with tumors of head and neck. We implemented the IPTrans tool that is a complete environment for data migration, which comprises: the construction of a model to describe the legacy clinical data, based on an ontology; the Extraction, Transformation and Load (ETL) process to extract the data from the source clinical database and load it in the Clinical Module of Chado; the development of a web tool and a Bridge Layer to adapt the web tool to Chado, as well as other applications. Conclusions Open-source computational solutions currently available for translational science does not have a model to represent biomolecular information and also are not integrated with the existing bioinformatics tools. On the other hand, existing genomic data models do not represent clinical patient data. A framework was developed to support translational research by integrating biomolecular information coming from different “omics” technologies with patient’s clinical and socio-demographic data. This framework should present some features: flexibility, compression and robustness. The experiments accomplished from a use case demonstrated that the proposed system meets requirements of flexibility and robustness, leading to the desired integration. The Clinical Module can be accessed in http://dcm.ffclrp.usp.br/caib/pg=iptrans webcite.