5 resultados para ultrafine particle concentration

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this study, particulate matter (PM) were characterized from a place impacted by heavy-duty vehicles (Bus Station) fuelled with diesel/biodiesel fuel blend (B3) in the city of Londrina, Brazil. Sixteen priority polycyclic aromatic hydrocarbons (PAH) concentrations were analyzed in the samples by their association with atmospheric PM, mass size distributions and major ions (fluorite, chloride, bromide, nitrate, phosphate, sulfate, nitrite, oxalate; fumarate, formate, succinate and acetate; lithium, sodium, potassium, magnesium, calcium and ammonium). Results indicate that major ions represented 21.2% particulate matter mass. Nitrate, sulfate, and ammonium, respectively, presented the highest concentration levels, indicating that biodiesel may also be a significant source for these ions, especially nitrate. Dibenzo[a,h]anthracene and indeno[1,2,3,-cd]pyrene were the main PAH found, and a higher fraction of PAH particles was found in diameters lower than 0.25 mu m in Londrina bus station. The fine and ultrafine particles were dominant among the PM evaluated, suggesting that biodiesel decreases the total PAH emission. However, it does also increase the fraction of fine and ultrafine particles when compared to diesel.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work presents a study on the effects of the particle size, material concentration and radiation energy on the X-ray absorption. CuO nanoparticles and microparticles were incorporated separately into a polymeric resin in concentrations of 5%, 10% and 30% relative to the resin mass. X-ray absorption by these materials was analyzed with a CdTe detector. The X-ray absorption is higher for the nanostructured material compared to the microstructured one for low energy X-ray beams for all CuO concentrations. (c) 2011 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, the measurement of the concentration and size of particles and the identification of their sources were carried out at five orthopedic surgeries. The aerosol concentration and particle size distribution, ranging from 0.3 mu m 10 mu m, were measured and related to the type of indoor activity. The handling of surgical linen and gowns, handling of the patient, use of electrosurgical apparatus, use of a bone saw, handling of equipment, and cleaning of the room were identified as the most important sources of particles, with each of these activities posing different risks to the health of the patients and workers. The results showed that most of the particles were above 0.5 mu m and that there was a strong correlation among all particles of sizes above 1 mu m. Particles with diameters in the range of 0.3 mu m-0.5 mu m had a good correlation only with particles in the ranges of 0.5 mu m-1.0 mu m and 1.0 mu m-3.0 mu m in three of the surgeries analyzed. Findings led to the conclusion that most of the events responsible for generating aerosol particles in an orthopedic surgery room are brief, intermittent, and highly variable, thus requiring the use of specific instrumentation for their continuous identification and characterization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Large conurbations are a significant source of the anthropogenic pollution and demographic differences between cities that result in a different pollution burden. The metropolitan area of Sao Paulo (MASP, population 20 million) accounts for one fifth of the Brazilian vehicular fleet. A feature of MASP is the amount of ethanol used by the vehicular fleet, known to exacerbate air quality. The study describes the diurnal behaviour of the submicron aerosol and relies on total particle number concentration, particle number size distribution, light scattering and light absorption measurements. Modelled planetary boundary layer (PBL) depth and air mass movement data were used to aid the interpretation. During morning rush-hour, stagnant air and a shallow PBL height favour the accumulation of aerosol pollution. During clear-sky conditions, there was a wind shift towards the edge of the city indicating a heat island effect with implications on particulate pollution levels at the site. The median total particle number concentration for the submicron aerosol typically varied in the range 1.6 x 10(4)-3.2 x 10(4) cm(-3) frequently exceeding 4 x 10(4) cm-3 during the day. During weekdays, nucleation-mode particles are responsible for most of the particles by numbers. The highest concentrations of total particle number concentrations and black carbon (BC) were observed on Fridays. Median diurnal values for light absorption and light scattering (at 637 nm wavelength) varied in the range 12-33 Mm(-1) and 21-64 Mm(-1), respectively. The former one is equal to 1.8-5.0 mu g m(-3) of BC. The growth of the PBL, from the morning rush-hour until noon, is consistent with the diurnal cycle of BC mass concentrations. Weekday hourly median single-scattering albedo (omega(0)) varied in the range 0.59-0.76. Overall, this suggests a top of atmosphere (TOA) warming effect. However, considering the low surface reflectance of urban areas, for the given range of omega(0), the TOA radiative forcing can be either positive or negative for the sources within the MASP. On the average, weekend omega(0) values were 0.074 higher than during weekdays. During 11% of the days, new particle formation (NPF) events occurred. The analysed events growth rates ranged between 9 and 25 nm h(-1). Sulphuric acid proxy concentrations calculated for the site were less than 5% of the concentration needed to explain the observed growth. Thus, other vapours are likely contributors to the observed growth.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Events of new particle formation (NPF) in tropical boundary layer followed by consecutive growth towards Aitken mode size range are sparse compared to mid- latitudes Kulmala et al. (2004). This is also the case for rainforest environment. More often short episodes of elevated ultrafine and Aitken mode aerosol particle concentrations are observed their origin and the processes governing these episodes do however remain unclear. Based on observations performed in the Amazonian rainforest environment combined with statistical analysis we present a mechanism explaining the erratic appearance of ultra-fine aerosol in tropical boundary layer of the rainforest.