17 resultados para transient loads
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Light-emitting electrochemical cells (LECs) made of electroluminescent polymers were studied by d.c. and transient current-voltage and luminance-voltage measurements to elucidate the operation mechanisms of this kind of device. The time and external voltage necessary to form electrical double layers (EDLs) at the electrode interfaces could be determined from the results. In the low-and intermediate-voltage ranges (below 1.1 V), the ionic transport and the electronic diffusion dominate the current, being the device operation better described by an electrodynamic model. For higher voltages, electrochemical doping occurs, giving rise to the formation of a p-i-n junction, according to an electrochemical doping model. Copyright (C) EPLA, 2012
Resumo:
When a scaled structure (model or replica) is used to predict the response of a full-size compound (prototype), the model geometric dimensions should relate to the corresponding prototype dimensions by a single scaling factor. However, owing to manufacturing technical restrictions, this condition cannot be accomplished for some of the dimensions in real structures. Accordingly, the distorted geometry will not comply with the overall geometric scaling factor, infringing the Pi theorem requirements for complete dynamic similarity. In the present study, a method which takes geometrical distortions into account is introduced, leading to a model similar to the prototype. As a means to infer the performance of this method, three analytical problems of structures subjected to dynamic loads are analysed. It is shown that the replica developed applying this technique is able to accurately predict the full-size structure behaviour even when the studied models have some of their dimensions severely distorted. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Chronic intake of high-carbohydrate or high-lipid diets is a well-known insulin resistance inducer. This study investigates the immediate effect (1-6 h) of a carbohydrate-or lipid-enriched meal on insulin sensitivity. Fasted rats were refed with standard, carbohydrate-enriched (C), or lipid-enriched (L) meal. Plasma insulin, glucose, and non-esterified fatty acids (NEFA) were measured at 1, 2, 4, and 6 h of refeeding. The glucose-insulin index showed that either carbohydrates or lipids decreased insulin sensitivity at 2 h of refeeding. At this time point, insulin tolerance tests (ITTs) and glucose tolerance tests (GTTs) detected insulin resistance in C rats, while GTT confirmed it in L rats. Reduced glycogen and phosphorylated AKT and GSK3 content revealed hepatic insulin resistance in C rats. Reduced glucose uptake in skeletal muscle subjected to the fatty acid concentration that mimics the high NEFA level of L rats suggests insulin resistance in these animals is mainly in muscle. In conclusion, carbohydrate-or lipid-enriched meals acutely disrupt glycemic homeostasis, inducing a transient insulin resistance, which seems to involve liver and skeletal muscle, respectively. Thus, the insulin resistance observed when those types of diets are chronically consumed may be an evolution of repeated episodes of this transient insulin resistance.
Resumo:
In this paper, a modeling technique for small-signal stability assessment of unbalanced power systems is presented. Since power distribution systems are inherently unbalanced, due to its lines and loads characteristics, and the penetration of distributed generation into these systems is increasing nowadays, such a tool is needed in order to ensure a secure and reliable operation of these systems. The main contribution of this paper is the development of a phasor-based model for the study of dynamic phenomena in unbalanced power systems. Using an assumption on the net torque of the generator, it is possible to precisely define an equilibrium point for the phasor model of the system, thus enabling its linearization around this point, and, consequently, its eigenvalue/eigenvector analysis for small-signal stability assessment. The modeling technique presented here was compared to the dynamic behavior observed in ATP simulations and the results show that, for the generator and controller models used, the proposed modeling approach is adequate and yields reliable and precise results.
Resumo:
Objective To determine whether activation of transient receptor potential vanilloid 4 (TRPV-4) induces inflammation in the rat temporomandibular joint (TMJ), and to assess the effects of TRPV-4 agonists and proinflammatory mediators, such as a protease-activated receptor 2 (PAR-2) agonist, on TRPV-4 responses. Methods Four hours after intraarticular injection of carrageenan into the rat joints, expression of TRPV-4 and PAR-2 in trigeminal ganglion (TG) neurons and in the TMJs were evaluated by real-time reverse transcriptionpolymerase chain reaction and immunofluorescence, followed by confocal microscopy. The functionality of TRPV-4 and its sensitization by a PAR-2activating peptide (PAR-2AP) were analyzed by measuring the intracellular Ca2+ concentration in TMJ fibroblast-like synovial cells or TG neurons. Plasma extravasation, myeloperoxidase activity, and the head-withdrawal threshold (index of mechanical allodynia) were evaluated after intraarticular injection of selective TRPV-4 agonists, either injected alone or coinjected with PAR-2AP. Results In the rat TMJs, TRPV-4 and PAR-2 expression levels were up-regulated after the induction of inflammation. Two TRPV-4 agonists specifically activated calcium influx in TMJ fibroblast-like synovial cells or TG neurons. In vivo, the agonists triggered dose-dependent increases in plasma extravasation, myeloperoxidase activity, and mechanical allodynia. In synovial cells or TG neurons, pretreatment with PAR-2AP potentiated a TRPV-4 agonistinduced increase in [Ca2+]i. In addition, TRPV-4 agonistinduced inflammation was potentiated by PAR-2AP in vivo. Conclusion In this rat model, TRPV-4 is expressed and functional in TG neurons and synovial cells, and activation of TRPV-4 in vivo causes inflammation in the TMJ. Proinflammatory mediators, such as PAR-2 agonists, sensitize the activity of TRPV-4. These results identify TRPV-4 as an important signal of inflammation in the joint.
Resumo:
The midbrain dorsal periaqueductal gray (dPAG) has an important role in orchestrating anxiety-and panic-related responses. Given the cellular and behavioral evidence suggesting opposite functions for cannabinoid type 1 receptor (CB1) and transient receptor potential vanilloid type-1 channel (TRPV1), we hypothesized that they could differentially influence panic-like reactions induced by electrical stimulation of the dPAG. Drugs were injected locally and the expression of CB1 and TRPV1 in this structure was assessed by immunofluorescence and confocal microscopy. The CB1-selective agonist, ACEA (0.01, 0.05 and 0.5 pmol) increased the threshold for the induction of panic-like responses solely at the intermediary dose, an effect prevented by the CB1-selective antagonist, AM251 (75 pmol). Panicolytic-like effects of ACEA at the higher dose were unmasked by pre-treatment with the TRPV1 antagonist capsazepine (0.1 nmol). Similarly to ACEA, capsazepine (1 and 10 nmol) raised the threshold for triggering panic-like reactions, an effect mimicked by another TRPV1 antagonist, SB366791 (1 nmol). Remarkably, the effects of both capsazepine and SB366791 were prevented by AM251 (75 pmol). These pharmacological data suggest that a common endogenous agonist may have opposite functions at a given synapse. Supporting this view, we observed that several neurons in the dPAG co-expressed CB1 and TRPV1. Thus, the present work provides evidence that an endogenous substance, possibly anandamide, may exert both panicolytic and panicogenic effects via its actions at CB1 receptors and TRPV1 channels, respectively. This tripartite set-point system might be exploited for the pharmacotherapy of panic attacks and anxiety-related disorders. Neuropsychopharmacology (2012) 37, 478-486; doi:10.1038/npp.2011.207; published online 21 September 2011
Resumo:
The circulation at the Eastern Brazilian Shelf (EBS), near 13 degrees S, is discussed in terms of the currents and hydrography, associating large-scale circulation, transient and local processes to establish a regional picture of the EBS circulation. The results show that the circulation within the continental shelf and slope region is strongly affected by the seasonal changes in the wind field and mesa/large-scale circulation. Transient processes associated to the passage of Cold Front systems or meso-scale activity and the presence of a local canyon add more complexity to the system. During the austral spring and summer seasons, the prevailing upwelling favorable winds blowing from E-NE were responsible for driving southwestward shelf currents. The interaction with the Western Boundary Current (the Brazil Current), especially during summer, was significant and a considerable vertical shear in the velocity field was observed at the outer shelf. The passage of a Cold Front system during the springtime caused a complete reversal of the mean flow and contributed to the deepening of the Mixed Layer Depth (MLD). In addition, the presence of Salvador Canyon, subject to an upwelling favorable boundary current, enhanced the upwelling system, when compared to the upwelling observed at the adjacent shelf. During the austral autumn and winter seasons the prevailing downwelling favorable winds blowing from the SE acted to total reverse the shelf circulation, resulting in a northeastward flow. The passage of a strong Cold Front, during the autumn season, contributed not only to the strengthening of the flow but also to the deepening of the MLD. The presence of the Salvador Canyon, when subject to a downwelling favorable boundary current, caused an intensification of the downwelling process. Interestingly, the alongshore velocity at the shelf region adjacent to the head of the canyon was less affected when compared to the upwelling situation.
Resumo:
Arterial hypertension is a major risk factor for ischemic stroke. However, the management of preexisting hypertension is still controversial in the treatment of acute stroke in hypertensive patients. The present study evaluates the influence of preserving hypertension during focal cerebral ischemia on stroke outcome in a rat model of chronic hypertension, the spontaneously hypertensive rats (SHR). Focal cerebral ischemia was induced by transient (1 h) occlusion of the middle cerebral artery, during which mean arterial blood pressure was maintained at normotension (110-120 mm Hg, group 1, n=6) or hypertension (160-170 mm Hg, group 2, n=6) using phenylephrine. T2-, diffusion- and perfusion-weighted MRI were performed serially at five different time points: before and during ischemia, and at 1, 4 and 7 days after ischemia. Lesion volume and brain edema were estimated from apparent diffusion coefficient maps and T2-weighted images. Regional cerebral blood flow (rCBF) was measured within and outside the perfusion deficient lesion and in the corresponding regions of the contralesional hemisphere. Neurological deficits were evaluated after reperfusion. Infarct volume, edema, and neurological deficits were significantly reduced in group 2 vs. group 1. In addition, higher values and rapid restoration of rCBF were observed in group 2, while rCBF in both hemispheres was significantly decreased in group 1. Maintaining preexisting hypertension alleviates ischemic brain injury in SHR by increasing collateral circulation to the ischemic region and allowing rapid restoration of rCBF. The data suggest that maintaining preexisting hypertension is a valuable approach to managing hypertensive patients suffering from acute ischemic stroke. Published by Elsevier B.V.
Resumo:
Mediastinal lymphadenomegaly secondary to hypervolemia is an underdiagnosed tomographic finding. Herein we describe, in a patient with normal cardiac function, findings of pulmonary congestion associated to lymph node enlargement. The nephrotic syndrome causing hypoalbuminemia, low plasma colloid osmotic pressure and augmented transcapillary fluid leakage was the probable cause of the radiological findings.
Resumo:
Oxidative stress and mitochondrial impairment are essential in the ischemic stroke cascade and eventually lead to tissue injury. C-Phycocyanin (C-PC) has previously been shown to have strong antioxidant and neuroprotective actions. In the present study, we assessed the effects of C-PC on oxidative injury induced by tert-butylhydroperoxide (t-BOOH) in SH-SY5Y neuronal cells, on transient ischemia in rat retinas, and in the calcium/phosphate-induced impairment of isolated rat brain mitochondria (RBM). In SH-SY5Y cells, t-BOOH induced a significant reduction of cell viability as assessed by an MTT assay, and the reduction was effectively prevented by treatment with C-PC in the low micromolar concentration range. Transient ischemia in rat retinas was induced by increasing the intraocular pressure to 120 mmHg for 45 min, which was followed by 15 min of reperfusion. This event resulted in a cell density reduction to lower than 50% in the inner nuclear layer (INL), which was significantly prevented by the intraocular pre-treatment with C-PC for 15 min. In the RBM exposed to 3 mM phosphate and/or 100 mu M Ca2+, C-PC prevented in the low micromolar concentration range, the mitochondrial permeability transition as assessed by mitochondrial swelling, the membrane potential dissipation, the increase of reactive oxygen species levels and the release of the pro-apoptotic cytochrome c. In addition, C-PC displayed a strong inhibitory effect against an electrochemically-generated Fenton reaction. Therefore, C-PC is a potential neuroprotective agent against ischemic stroke, resulting in reduced neuronal oxidative injury and the protection of mitochondria from impairment. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Charge transport and shelf-degradation of MEH-PPV thin-films were investigated through stationary (e.g. current versus voltage - JxV) and transient (e.g. Time-of-Flight - ToF, Dark-Injection Space-Charge-Limited Current - DI-SCLC, Charge Extraction by Linearly Increasing Voltage - CELN) current techniques. Charge carrier mobility in nanometric films was best characterized through JxV and DI-SCLC. It approaches 10(-6) cm(2)Ns under a SCLC regime with deep traps for light-emitting diode applications. ToF measurements performed on micrometric layers (i.e. - 3 mu m) confirmed studies in 100 nm-thick films as deposited in OLEDs. All results were comparable to a similar poly(para-phenylene vinylene) derivative, MDMO-PPV. Electrical properties extracted from thin-film transistors demonstrated mobility dependence on carrier concentration in the channel (similar to 10(-7)-10(-4) cm(2)/Vs). At low accumulated charge levels and reduced free carrier concentration, a perfect agreement to the previously cited techniques was observed. Degradation was verified through mobility reduction and changes in trap distribution of states. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The impact of Structured Treatment Interruption (STI) in peripheral blood mononuclear cell (PBMC) proviral reservoirs in 41 highly active antiretroviral therapy (HAART)-treated viremic individuals at baseline and 12 weeks after STI was determined using quantitative PCR (qPCR). Viral load increased 0.7 log(10) and CD4 decreased 97.5 cells/mm(3) after 12 weeks. A total of 28 of the 41 individuals showed an increased proviral load, 19 with a statistically significant increase above 10%. An increase in active viral replication is an important factor in the replenishment of the proviral reservoir even for short time periods.
Resumo:
Background-Patients with acute coronary syndromes and history of stroke or transient ischemic attack (TIA) have an increased rate of recurrent cardiac events and intracranial hemorrhages. Methods and Results-We evaluated treatment effects of ticagrelor versus clopidogrel in patients with acute coronary syndrome with and without a history of prior stroke or TIA in the PLATelet inhibition and patient Outcomes (PLATO) trial. Of the 18 624 randomized patients, 1152 (6.2%) had a history of stroke or TIA. Such patients had higher rates of myocardial infarction (11.5% versus 6.0%), death (10.5% versus 4.9%), stroke (3.4% versus 1.2%), and intracranial bleeding (0.8% versus 0.2%) than patients without prior stroke or TIA. Among patients with a history of stroke or TIA, the reduction of the primary composite outcome and total mortality at 1 year with ticagrelor versus clopidogrel was consistent with the overall trial results: 19.0% versus 20.8% (hazard ratio, 0.87; 95% confidence interval, 0.66-1.13; interaction P=0.84) and 7.9% versus 13.0% (hazard ratio, 0.62; 95% confidence interval, 0.42-0.91). The overall PLATO-defined bleeding rates were similar: 14.6% versus 14.9% (hazard ratio, 0.99; 95% confidence interval, 0.71-1.37), and intracranial bleeding occurred infrequently (4 versus 4 cases, respectively). Conclusions-Patients with acute coronary syndrome with a prior history of ischemic stroke or TIA had higher rates of clinical outcomes than patients without prior stroke or TIA. However, the efficacy and bleeding results of ticagrelor in these high-risk patients were consistent with the overall trial population, with a favorable clinical net benefit and associated impact on mortality.
Resumo:
Background: Recent studies have shown an important reduction of joint overload during locomotion in elderly women with knee osteoarthritis (OA) after short- term use of minimalist shoes. Our aim is to investigate the chronic effect of inexpensive and minimalist footwear on the clinical and functional aspects of OA and gait biomechanics of elderly women with knee OA. Methods/Design: Fifty-six elderly women with knee OA grade 2 or 3 (Kellgren and Lawrence) are randomized into blocks and allocated to either the intervention group, which will use flexible, non-heeled shoes-Moleca (R)-for six months for at least six hours daily, or the control group, which could not use these shoes. Neither group is undergoing physical therapy treatment throughout the intervention period. Moleca (R) is a women's double canvas, flexible, flat walking shoe without heels, with a 5-mm anti-slip rubber sole and a 3-mm internal wedge of ethylene vinyl acetate. Both groups will be followed for six months and will be assessed at baseline condition, after three months, and after six months (end of intervention). All the assessments will be performed by a physiotherapist that is blind to the group allocation. The primary outcome is the pain Western Ontario and McMaster Universities Osteoarthritis (WOMAC) score. The secondary outcomes are global WOMAC score; joint stiffness and disability WOMAC scores; knee pain with a visual analogue scale; walking distance in the six-minute walk test; Lequesne score; amount and frequency (number of days) of paracetamol (500 mg) intake over six months; knee adduction moment during gait; global medical assessment score; and global patient auto-assessment score. At baseline, all patients receive a diary to record the hours of daily use of the footwear intervention; every two weeks, the same physiotherapist makes phone calls to all patients in order to verify adherence to treatment. The statistical analysis will be based on intention to treat analysis, as well as general linear models of analysis of variance for repeated measure to detect treatment-time interactions (alpha = 5%). Discussion: This is the first randomized, clinical trial protocol to assess the chronic effect of minimalist footwear on the clinical and functional aspects and gait biomechanics of elderly women with knee osteoarthritis. We expect that the use of Moleca (R) shoes for six months will provide pain relief, reduction of the knee adduction moment when walking, and improve joint function in elderly women with knee OA, and that the treatment, thus, can be considered another inexpensive and easy-to-use option for conservative OA treatment.