2 resultados para transaminase glutâmico-oxaloacético

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Objective The ketogenic diet is used as a therapeutic alternative for the treatment of epilepsy in patients with refractory epilepsy. It simulates biochemical changes typical of fasting. The present study verified the nutritional impact of the ketogenic diet on children with refractory epilepsy. Methods Nutritional status data (dietary, biochemical and anthropometric measurements), seizure frequency, and adverse events were collected from the medical records and during outpatient clinic visits of children over a period of 36 months. Results Of the 29 children who initiated the ketogenic diet, 75.8% presented fewer seizures after one month of treatment. After six months, 48.3% of the patients had at least a 90.0% decrease in seizure frequency, and 50.0% of these patients presented total seizure remission. At 12 months, eight patients continued to show positive results, and seven of these children remained on the ketogenic diet for 24 months. There was an improvement of the nutritional status at 24 months, especially in terms of weight, which culminated with the recovery of proper weight-for-height. There were no significant changes in biochemical indices (total cholesterol and components, triglycerides, albumin, total protein, creatinine, glycemia, serum aspartate transaminase and serum alanine transaminase). Serum cholesterol levels increased significantly in the first month, fell in the following six months, and remained within the normal limits thereafter. Conclusion In conclusion, patients on the classic ketogenic diet for at least 24 months gained weight. Moreover, approximately one third of the patients achieved significant reduction in seizure frequency, and some patients achieved total remission.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In Brazil, the species Tityus serrulatus is responsible for the most severe cases of scorpion envenomation. There is currently a need for new scorpion anti-venoms that are more effective and less harmful. This study attempted to produce human monoclonal antibodies capable of inhibiting the activity of T. serrulatus venom (TsV), using the Griffin.1 library of human single-chain fragment-variable (scFv) phage antibodies. Four rounds of phage antibody selection were performed, and the round with the highest phage antibody titer was chosen for the production of monoclonal phage antibodies and for further analysis. The scFv 2A, designated serrumab, was selected for the production and purification of soluble antibody fragments. In a murine peritoneal macrophage cell line (J774.1), in vitro assays of the cytokines interleukin (IL)-6, tumor necrosis factor (TNF)-alpha, and IL-10 were performed. In male BALB/c mice, in vivo assays of plasma urea, creatinine, aspartate transaminase, and glucose were performed, as well as of neutrophil recruitment and leukocyte counts. It was found that serrumab inhibited the TsV-induced increases in the production of IL-6, TNF alpha, and IL-10 in J774.1 cells. The in vivo inhibition assay showed that serrumab also prevented TsV-induced increases in the plasma levels of urea, creatinine, aspartate transaminase, and glucose, as well as preventing the TsV-induced increase in neutrophil recruitment. The results indicate that the human monoclonal antibody serrumab is a candidate for inclusion in a mixture of specific antibodies to the various toxins present in TsV. Therefore, serrumab shows promise for use in the production of new anti-venom.