7 resultados para tracking of explosives

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background: Chronic diseases are the leading cause of premature death and disability in the world with overnutrition a primary cause of diet-related ill health. Excess energy intake, saturated fat, sugar, and salt derived from processed foods are a major cause of disease burden. Our objective is to compare the nutritional composition of processed foods between countries, between food companies, and over time. Design: Surveys of processed foods will be done in each participating country using a standardized methodology. Information on the nutrient composition for each product will be sought either through direct chemical analysis, from the product label, or from the manufacturer. Foods will be categorized into 14 groups and 45 categories for the primary analyses which will compare mean levels of nutrients at baseline and over time. Initial commitments to collaboration have been obtained from 21 countries. Conclusions: This collaborative approach to the collation and sharing of data will enable objective and transparent tracking of processed food composition around the world. The information collected will support government and food industry efforts to improve the nutrient composition of processed foods around the world.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

During the manufacture of explosives, large amounts of water are used to remove unwanted by-products generated. This water in turn, ends up in wastewater treatment plants or water bodies. The aim of this study was to evaluate the toxic potential of effluent generated by 2.4.6-Trinitrotoluene (TNT) production, yellow water, red water and mixture of yellow and red water, produced from a plant located in the Paraiba Valley, Sao Paolo state, Brazil. Daphnia similis, Danio rerio, Escherichia coli, Pseudomonas putida and Pseudokircheneriella subcaptata were used as test organisms. Physicochemical parameters such as color, pH, conductivity, total dissolved solids, dissolved oxygen, chemical oxygen demand (COD) and biochemical oxygen demand (BOD) were evaluated. Effluent from 2.4.6-TNT production was extremely toxic to all test organisms. The physicochemical parameters evaluated showed high levels of conductivity (from 41.533 to 42.344 mu S /cm) and chemical oxygen demand (COD of 8471 to 27.364 mg/L) for the effluents analyzed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Particle tracking of microbeads attached to the cytoskeleton (CSK) reveals an intermittent dynamic. The mean squared displacement (MSD) is subdiffusive for small Δt and superdiffusive for large Δt, which are associated with periods of traps and periods of jumps respectively. The analysis of the displacements has shown a non-Gaussian behavior, what is indicative of an active motion, classifying the cells as a far from equilibrium material. Using Langevin dynamics, we reconstruct the dynamic of the CSK. The model is based on the bundles of actin filaments that link themself with the bead RGD coating, trapping it in an harmonic potential. We consider a one- dimensional motion of a particle, neglecting inertial effects (over-damped Langevin dynamics). The resultant force is decomposed in friction force, elastic force and random force, which is used as white noise representing the effect due to molecular agitation. These description until now shows a static situation where the bead performed a random walk in an elastic potential. In order to modeling the active remodeling of the CSK, we vary the equilibrium position of the potential. Inserting a motion in the well center, we change the equilibrium position linearly with time with constant velocity. The result found exhibits a MSD versus time ’tau’ with three regimes. The first regime is when ‘tau’ < ‘tau IND 0’, where ‘tau IND 0’ is the relaxation time, representing the thermal motion. At this regime the particle can diffuse freely. The second regime is a plateau, ‘tau IND 0’ < ‘tau’ < ‘tau IND 1’, representing the particle caged in the potential. Here, ‘tau IND 1’ is a characteristic time that limit the confinement period. And the third regime, ‘tau’ > ‘tau IND 1’, is when the particles are in the superdiffusive behavior. This is where most of the experiments are performed, under 20 frames per second (FPS), thus there is no experimental evidence that support the first regime. We are currently performing experiments with high frequency, up to 100 FPS, attempting to visualize this diffusive behavior. Beside the first regime, our simple model can reproduce MSD curves similar to what has been found experimentally, which can be helpful to understanding CSK structure and properties.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The pathophysiology of neurodegenerative diseases (ND) such as Alzheimer's disease (AD) and Parkinson's disease (PD) has not yet been completely elucidated. However, in the past few years, there have been great knowledge advances about intra-and extracellular proteins that may display impaired function or expression in AD, PD and other ND, such as amyloid beta (AB), alpha-synuclein, tau protein and neuroinfiammatory markers. Recent developments in the imaging techniques of positron emission tomography (PET) and single photon emission computed tomography (SPECT) now allow the non-invasive tracking of such molecular targets of known relevance to ND in vivo. This article summarizes recent findings of PET and SPECT studies using these novel methods, and discusses their potential role in the field of drug development for ND as well as future clinical applications in regard to differential diagnosis of ND and monitoring of disease progression.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

OBJECTIVE: The aim of the current study was to monitor the migration of superparamagnetic iron oxide nanoparticle (SPION)-labeled C6 cells, which were used to induce glioblastoma tumor growth in an animal model, over time using magnetic resonance imaging (MRI), with the goal of aiding in tumor prognosis and therapy. METHODS: Two groups of male Wistar rats were used for the tumor induction model. In the first group (n=3), the tumors were induced via the injection of SPION-labeled C6 cells. In the second group (n=3), the tumors were induced via the injection of unlabeled C6 cells. Prussian Blue staining was performed to analyze the SPION distribution within the C6 cells in vitro. Tumor-inducing C6 cells were injected into the right frontal cortex, and subsequent tumor monitoring and SPION detection were performed using T2- and T2*-weighted MRI at a 2T field strength. In addition, cancerous tissue was histologically analyzed after performing the MRI studies. RESULTS: The in vitro qualitative evaluation demonstrated adequate distribution and satisfactory cell labeling of the SPIONs. At 14 or 21 days after C6 injection, a SPION-induced T2- and T2*-weighted MRI signal reduction was observed within the lesion located in the left frontal lobe on parasagittal topography. Moreover, histological staining of the tumor tissue with Prussian Blue revealed a broad distribution of SPIONs within the C6 cells. CONCLUSION: MRI analyses exhibit potential for monitoring the tumor growth of C6 cells efficiently labeled with SPIONs.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Explosives industries are a source of toxic discharge. The aim of this study was to compare organisms sensitivity (Daphnia similis, Danio rerio, Escherichia coli and Pseudomonas putida) in detecting acute toxicity in wastewater from two explosives, 2,4,6-TNT (TNT) and nitrocellulose. The samples were collected from an explosives company in the Paraiba Valley, So Paulo, Brazil. The effluents from TNT and nitrocellulose production were very toxic for tested organisms. Statistical tests indicated that D. similis and D. rerio were the most sensitive organisms for toxicity detection in effluents from 2,4,6-TNT and nitrocellulose production. The P. putida bacteria was the organism considered the least sensitive in indicating toxicity in effluents from nitrocellulose.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Personalized treatments have become a primary goal in translational psychiatric research. They include the identification of neural circuits associated with psychiatric disorders and definition of treatment according to individual characteristics. Many new tools and technologies have been developed but further efforts are required to provide clues on how these scientific advances in psychiatry may be translated into more effective therapeutic approaches. Obstacles to the progress of translational psychiatry also involve numerous scientific, financial, ethical, logistics and regulatory aspects. Also, the goal of DSM-5 to expand “signs and symptoms” classification to incorporate biological measures may help the development of new multifactorial and dimensional models able to better understand the pathophysiology of psychiatric disorders and develop improved treatments. Finally, a better understanding on the significant response variability, cognitive functioning, role of comorbidities and treatment-resistant cases are critical for the development of prevention and intervention strategies that are more effective.