3 resultados para tonometry
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
PURPOSE. To evaluate electrically evoked phosphene thresholds (EPTs) in healthy subjects and in patients with retinal disease and to assess repeatability and possible correlations with common ophthalmologic tests. METHODS. In all, 117 individuals participated: healthy subjects (n = 20) and patients with retinitis pigmentosa (RP, n = 30), Stargardt's disease (STG, n = 14), retinal artery occlusion (RAO, n = 20), nonarteritic anterior ischemic optic neuropathy (NAION, n = 16), and primary open-angle glaucoma (POAG, n = 17). EPTs were determined at 3, 6, 9, 20, 40, 60, and 80 Hz with 5+5-ms biphasic current pulses using DTL electrodes. Subjects were examined twice (test-retest range: 1-6 weeks). An empirical model was developed to describe the current-frequency relationship of EPTs. Visual acuity, visual field (kinetic + static), electrophysiology (RP, RAO, STG: Ganzfeld-electroretinography [ERG]/multifocal-ERG; POAG: pattern-ERG; NAION: VEP), slit-lamp biomicroscopy, fundus examination, and tonometry were assessed. RESULTS. EPTs varied between disease groups (20 Hz: healthy subjects: 0.062 +/- 0.038 mA; STG: 0.102 +/- 0.097 mA; POAG: 0.127 +/- 0.09 mA; NAION: 0.244 +/- 0.126 mA; RP: 0.371 +/- 0.223 mA; RAO: 0.988 +/- 1.142 mA). In all groups EPTs were lowest at 20 Hz. In patients with retinal diseases and across all frequencies EPTs were significantly higher than those in healthy subjects, except in STG at 20 Hz (P = 0.09) and 40 Hz (P = 0.17). Test-retest difference at 20 Hz was 0.006 mA in the healthy group and 0.003-0.04 mA in disease groups. CONCLUSIONS. Considering the fast, safe, and reliable practicability of EPT testing, this test might be used more often under clinical circumstances. Determination of EPTs could be potentially useful in elucidation of the progress of ophthalmologic diseases, either in addition to standard clinical assessment or under conditions in which these standard tests cannot be used meaningfully. (ClinicalTrials.gov number, NCT00804102.) (Invest Ophthalmol Vis Sci. 2012; 53: 7440-7448) DOI:10.1167/iovs.12-9612
Resumo:
Abstract Introduction We conducted the present study to investigate whether early large-volume crystalloid infusion can restore gut mucosal blood flow and mesenteric oxygen metabolism in severe sepsis. Methods Anesthetized and mechanically ventilated male mongrel dogs were challenged with intravenous injection of live Escherichia coli (6 × 109 colony-forming units/ml per kg over 15 min). After 90 min they were randomly assigned to one of two groups – control (no fluids; n = 13) or lactated Ringer's solution (32 ml/kg per hour; n = 14) – and followed for 60 min. Cardiac index, mesenteric blood flow, mean arterial pressure, systemic and mesenteric oxygen-derived variables, blood lactate and gastric carbon dioxide tension (PCO2; by gas tonometry) were assessed throughout the study. Results E. coli infusion significantly decreased arterial pressure, cardiac index, mesenteric blood flow, and systemic and mesenteric oxygen delivery, and increased arterial and portal lactate, intramucosal PCO2, PCO2 gap (the difference between gastric mucosal and arterial PCO2), and systemic and mesenteric oxygen extraction ratio in both groups. The Ringer's solution group had significantly higher cardiac index and systemic oxygen delivery, and lower oxygen extraction ratio and PCO2 gap at 165 min as compared with control animals. However, infusion of lactated Ringer's solution was unable to restore the PCO2 gap. There were no significant differences between groups in mesenteric oxygen delivery, oxygen extraction ratio, or portal lactate at the end of study. Conclusion Significant disturbances occur in the systemic and mesenteric beds during bacteremic severe sepsis. Although large-volume infusion of lactated Ringer's solution restored systemic hemodynamic parameters, it was unable to correct gut mucosal PCO2 gap.
Resumo:
Abstract Introduction We conducted the present study to examine the effects of hypertonic saline solution (7.5%) on cardiovascular function and splanchnic perfusion in experimental sepsis. Methods Anesthetized and mechanically ventilated mongrel dogs received an intravenous infusion of live Escherichia coli over 30 minutes. After 30 minutes, they were randomized to receive lactated Ringer's solution 32 ml/kg (LR; n = 7) over 30 minutes or 7.5% hypertonic saline solution 4 ml/kg (HS; n = 8) over 5 minutes. They were observed without additional interventions for 120 minutes. Cardiac output (CO), mean arterial pressure (MAP), portal and renal blood flow (PBF and RBF, respectively), gastric partial pressure of CO2 (pCO2; gas tonometry), blood gases and lactate levels were assessed. Results E. coli infusion promoted significant reductions in CO, MAP, PBF and RBF (approximately 45%, 12%, 45% and 25%, respectively) accompanied by an increase in lactate levels and systemic and mesenteric oxygen extraction (sO2ER and mO2ER). Widening of venous-arterial (approximately 15 mmHg), portal-arterial (approximately 18 mmHg) and gastric mucosal-arterial (approximately 55 mmHg) pCO2 gradients were also observed. LR and HS infusion transiently improved systemic and regional blood flow. However, HS infusion was associated with a significant and sustained reduction of systemic (18 ± 2.6 versus 38 ± 5.9%) and mesenteric oxygen extraction (18.5 ± 1.9 versus 36.5 ± 5.4%), without worsening other perfusional markers. Conclusion A large volume of LR or a small volume of HS promoted similar transient hemodynamic benefits in this sepsis model. However, a single bolus of HS did promote sustained reduction of systemic and mesenteric oxygen extraction, suggesting that hypertonic saline solution could be used as a salutary intervention during fluid resuscitation in septic patients.