2 resultados para timeframe
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Mortatti, AL, Moreira, A, Aoki, MS, Crewther, BT, Castagna, C, de Arruda, AFS, and Filho, JM. Effect of competition on salivary cortisol, immunoglobulin A, and upper respiratory tract infections in elite young soccer players. J Strength Cond Res 26(5): 1396-1401, 2012-The present study examined the effect of a 20-day period of competition on salivary cortisol, mucosal immunity, and upper respiratory tract infections (URTI) in young male soccer players (n = 14). The players were monitored during the main under-19 Brazilian soccer championship, in which 7 matches were played in 20 days. Saliva samples were collected in the morning of each match and analyzed for cortisol and immunoglobulin A (IgA). Signs and symptoms of URTI were assessed across the study and a rating of perceived exertion (RPE) was obtained for each match. Compared with match 1, a significant increase in player RPE was observed in matches 4-7 (p < 0.05). Significant (p < 0.05) increases in the reporting of URTI occurred between matches 2 and 3, and 6 and 7, and this was accompanied by significant decreases in salivary IgA levels. Significant (p < 0.05) correlations were also seen between the individual reports of URTI and the decrease in IgA levels in match 2 (r = -0.60) and match 6 (r = -0.65). These results suggest that decrements in mucosal immunity, as measured by salivary IgA concentrations, may lead to a greater incidence of URTI in elite young soccer players. It may be speculated that the physiological and psychological stressors imposed by training and competition in a short timeframe are major contributing factors to these responses. Thus, the monitoring of salivary IgA could provide a useful and noninvasive approach for predicting URTI occurrences in young athletes during short-term competitions, especially if frequent sampling and rapid measurements are made.
Resumo:
Background and Purpose-The pattern of antenatal brain injury varies with gestational age at the time of insult. Deep brain nuclei are often injured at older gestational ages. Having previously shown postnatal hypertonia after preterm fetal rabbit hypoxia-ischemia, the objective of this study was to investigate the causal relationship between the dynamic regional pattern of brain injury on MRI and the evolution of muscle tone in the near-term rabbit fetus. Methods-Serial MRI was performed on New Zealand white rabbit fetuses to determine equipotency of fetal hypoxia-ischemia during uterine ischemia comparing 29 days gestation (E29, 92% gestation) with E22 and E25. E29 postnatal kits at 4, 24, and 72 hours after hypoxia-ischemia underwent T2- and diffusion-weighted imaging. Quantitative assessments of tone were made serially using a torque apparatus in addition to clinical assessments. Results-Based on the brain apparent diffusion coefficient, 32 minutes of uterine ischemia was selected for E29 fetuses. At E30, 58% of the survivors manifested hind limb hypotonia. By E32, 71% of the hypotonic kits developed dystonic hypertonia. Marked and persistent apparent diffusion coefficient reduction in the basal ganglia, thalamus, and brain stem was predictive of these motor deficits. Conclusions-MRI observation of deep brain injury 6 to 24 hours after near-term hypoxia-ischemia predicts dystonic hypertonia postnatally. Torque-displacement measurements indicate that motor deficits in rabbits progressed from initial hypotonia to hypertonia, similar to human cerebral palsy, but in a compressed timeframe. The presence of deep brain injury and quantitative shift from hypo-to hypertonia may identify patients at risk for developing cerebral palsy. (Stroke. 2012;43:2757-2763.)