15 resultados para thermal effects
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Mach number and thermal effects on the mechanisms of sound generation and propagation are investigated in spatially evolving two-dimensional isothermal and non-isothermal mixing layers at Mach number ranging from 0.2 to 0.4 and Reynolds number of 400. A characteristic-based formulation is used to solve by direct numerical simulation the compressible Navier-Stokes equations using high-order schemes. The radiated sound is directly computed in a domain that includes both the near-field aerodynamic source region and the far-field sound propagation. In the isothermal mixing layer, Mach number effects may be identified in the acoustic field through an increase of the directivity associated with the non-compactness of the acoustic sources. Baroclinic instability effects may be recognized in the non-isothermal mixing layer, as the presence of counter-rotating vorticity layers, the resulting acoustic sources being found less efficient. An analysis based on the acoustic analogy shows that the directivity increase with the Mach number can be associated with the emergence of density fluctuations of weak amplitude but very efficient in terms of noise generation at shallow angle. This influence, combined with convection and refraction effects, is found to shape the acoustic wavefront pattern depending on the Mach number.
Resumo:
This study reports the effects on micromorphology and temperature rise in human dentin using different frequencies of Er:YAG laser. Sixty human dentin fragments were randomly assigned into two groups (n = 30): carious or sound dentin. Both groups were divided into three subgroups (n = 10), according to the Er:YAG laser frequency used: 4, 6, or 10 Hz (energy: 200 mJ; irradiation distance: 12 mm; and irradiation time: 20 s). A thermocouple adapted to the tooth fragment recorded the initial temperature value (degrees C); then, the temperature was measured after the end of the irradiation (20 s). Morphological analysis was performed using images obtained with scanning electron microscope. There was no difference between the temperatures obtained with 4 and 6 Hz; the highest temperatures were achieved with 10 Hz. No difference was observed between carious and sound dentin. Morphological analyses revealed that all frequencies promoted irregular surface in sound dentin, being observed more selectively ablation especially in intertubular dentin with tubule protrusion. The caries dentin presented flat surface for all frequencies used. Both substrates revealed absence of any signs of thermal damage. It may be concluded that the parameters used in this study are capable to remove caries lesion, having acceptable limits of temperature rise and no significant morphological alterations on dentin surface. Microsc. Res. Tech. 2012. (c) 2012 Wiley Periodicals, Inc.
Resumo:
This paper presents the results of an experimental study of thermal effects on filter paper calibration curves used to obtain the soil suction. When the temperature is significantly different from ambient values, it is essential to consider the influence of temperature on the filter paper calibration curves to obtain a reliable soil suction measurement. The calibration curve of Whatman No. 42 filter paper was determined at 10 degrees C, 25 degrees C, and 50 degrees C using the vapor equilibrium technique with sodium chloride solutions at different concentrations and the axis translation technique. The experimental results showed a major influence of temperature on the filter paper calibration curves. Using the obtained experimental data a calibration equation was proposed, taking into account the effect of temperature. The obtained calibration curves were then used to determine the soil water retention curve of kaolin clay, which showed lower retention capacity at higher temperatures.
Resumo:
We present a detailed study of the Baryscan technique, a new efficient alternative to the widespread Z-scan technique which has been demonstrated [Opt. Lett. 36:8, 2011] to reach among the highest sensitivity levels. This method is based upon the measurement of optical nonlinearities by means of beam centroid displacements with a position sensitive detector and is able to deal with any kind of lensing effect. This technique is applied here to measure pump-induced electronic refractive index changes (population lens), which can be discriminated from parasitic thermal effects by using a time-resolved Baryscan experiment. This method is validated by evaluating the polarizability variation at the origin of the population lens observed in the reference Cr3+:GSGG laser material.
Resumo:
This paper describes a CMOS implementation of a linear voltage regulator (LVR) used to power up implanted physiological signal systems, as it is the case of a wireless blood pressure biosensor. The topology is based on a classical structure of a linear low-dropout regulator. The circuit is powered up from an RF link, thus characterizing a passive radio frequency identification (RFID) tag. The LVR was designed to meet important features such as low power consumption and small silicon area, without the need for any external discrete components. The low power operation represents an essential condition to avoid a high-energy RF link, thus minimizing the transmitted power and therefore minimizing the thermal effects on the patient's tissues. The project was implemented in a 0.35-mu m CMOS process, and the prototypes were tested to validate the overall performance. The LVR output is regulated at 1 V and supplies a maximum load current of 0.5 mA at 37 degrees C. The load regulation is 13 mV/mA, and the line regulation is 39 mV/V. The LVR total power consumption is 1.2 mW.
Resumo:
Using numerical models that couple surface processes, flexural isostasy, faulting and the thermal effects of rifting, we show that fault-bounded escarpments created at rift flanks by mechanical unloading and flexural rebound have little potential to "survive" as retreating escarpments if the lower crust under the rift flank is substantially stretched. In this configuration, a drainage divide that persists through time appears landward of the initial escarpment in a position close to a secondary bulge that is created during the rifting event at a distance that depends on the flexural rigidity of the upper crust. Moreover, the migration of the escarpment to the secondary bulge occurs when the pre-rift topography dips landward, otherwise the evolution of the escarpment is guided by the pre-existing inland drainage divide. To illustrate this new mechanism for the evolution of passive margins, we study the examples of Southeastern Australia and Southeastern Brazil. We propose that a pre-existing inland drainage divide with rift related flank uplift can produce the double drainage divide observed in Southeastern Australia. On the other hand, we conclude that it is possible that the Serra do Mar escarpments on the Southeastern Brazilian margin originated as a secondary flexural bulge during rifting that persisted through time. In both cases, the retreating escarpment scenario is unlikely and the present-day margin morphology can be explained as resulting from rift-related vertical motions alone, without requiring significant post-rift "rejuvenation".
Resumo:
Sugarcane bagasse cellulose was subjected to the extremely low acid (ELA) hydrolysis in 0.07% H2SO4 at 190, 210 and 225 degrees C for various times. The cellulose residues from this process were characterized by TGA, XRD, GPC, FIR and SEM. A kinetic study of thermal decomposition of the residues was also carried out, using the ASTM and Kissinger methods. The thermal studies revealed that residues of cellulose hydrolyzed at 190, 210 and 225 degrees C for 80,40 and 8 min have initial decomposition temperature and activation energy for the main decomposition step similar to those of Avicel PH-101. XRD studies confirmed this finding by showing that these cellulose residues are similar to Avicel in crystallinity index and crystallite size in relation to the 110 and 200 planes. FTIR spectra revealed no significant changes in the cellulose chemical structure and analysis of SEM micrographs demonstrated that the particle size of the cellulose residues hydrolyzed at 190 and 210 degrees C were similar to that of Avicel. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The present work reports on the thermo-optical study of germanate thin films doped with Au and Ag nanoparticles. Transmission Electron Microscopy images, UV-visible absorption and Micro-Raman scattering evidenced the presence of nanoparticles and the formation of collective excitations, the so called surface plasmons. Moreover, the effects of the metallic nanoparticles in the thermal properties of the films were observed. The thermal lens technique was proposed to evaluate the Thermal Diffusivity (D) of the samples. It furnishes superficial spatial resolution of about 100 mu m, so it is appropriate to study inhomogeneous samples. It is shown that D may change up to a factor 3 over the surface of a film because of the differences in the nanoparticles concentration distribution. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
We measured the K-41 thermal neutron absorption and resonance integral cross sections after the irradiation of KNO3 samples near the core of the IEA-R1 IPEN pool-type research reactor. Bare and cadmium-covered targets were irradiated in pairs with Au-Al alloy flux-monitors. The residual activities were measured by gamma-ray spectroscopy with a HPGe detector, with special care to avoid the K-42 decay beta(-) emission effects on the spectra. The gamma-ray self-absorption was corrected with the help of MCNP simulations. We applied the Westcott formalism in the average neutron flux determination and calculated the depression coefficients for thermal and epithermal neutrons due to the sample thickness with analytical approximations. We obtained 1.57(4) and 1.02(4) b, for thermal and resonance integral cross sections, respectively, with correlation coefficient equal to 0.39.
Resumo:
Introduction: Radiation therapy (RT) of malignant tumors in the head and neck area may have damaging effects on surrounding tissues. The aim of this investigation was to evaluate the effects of RI delivered by 3-dimensional conformal radiotherapy (3D-RT) or intensity-modulated radiotherapy (IMRT) on dental pulp sensitivity. Methods: Twenty patients with oral or oropharyngeal cancer receiving RT with 3D-RT or IMRT underwent cold thermal pulp sensitivity testing (PST) of 2 teeth each at 4 time points: before RT (TP1), the beginning of RT with doses between 30 and 35 Gy (TP2), the end of RT with doses between 60 and 70 Gy (TP3), and 4 to 5 months after the start of RT (TP4). Results: All 40 teeth showed positive responses to PST at TP1 (100%) and 9 at TP2 (22.5%; 3/16 [18.8%] for 3D-RT and 6/24 [25.0%] for IMRT). No tooth responded to PST at TP3 and TP4 (0%). A statistically significant difference existed in the number of positive pulp responses between different time points (TP1 through TP4) for all patients receiving RT (P <= .05), IMRT (P <= .05), and 3D-RT (P <= .05). No statistically significant differences in positive sensitivity responses were found between 3D-RT and IMRT at any time point (TP1, TP3, TP4, P = 1.0; TP2, P = .74). A statistically significant correlation existed between the location of the tumor and PST at TP2 for IMRT (P <= .05) but not for 3D-RT (P = .14). Conclusions: RT decreased the number of teeth responding to PST after doses greater than 30 to 35 Gy. The type of RT (3D-RT or IMRT) had no influence on the pulp responses to PST after the conclusion of RT. (J Endod 2012;38:148-152)
Resumo:
Active pharmaceutical ingredients have very strict quality requirements; minor changes in the physical and chemical properties of pharmaceuticals can adversely affect the dissolution rate and therefore the bioavailability of a given drug. Accordingly, the aim of the present study was to investigate the effect of spray drying on the physical and in vitro dissolution properties of four different active pharmaceutical ingredients, namely carbamazepine, indomethacin, piroxicam, and nifedipine. Each drug was dispersed in a solution of ethanol and water (70:30) and subjected to single-step spray drying using similar operational conditions. A complete characterization of the spray-dried drugs was performed via differential scanning calorimetry (DSC), scanning electron microscopy (SEM), X-ray powder diffraction (XRPD), particle size distribution analysis, solubility analysis, and an in vitro dissolution study. The results from the thermal analysis and X-ray diffraction showed that, except for carbamazepine, no chemical modifications occurred as a result of spray drying. Moreover, the particle size distribution of all the spray-dried drugs significantly decreased. In addition, SEM images showed that most of the particles had an irregular shape. There was no significant improvement in the solubility of the spray-dried drugs compared with the unprocessed compounds; however, in general, the dissolution rates of the spray-dried drugs showed a remarkable improvement over their non-spray-dried counterparts. Therefore, the results from this study demonstrate that a single spray-drying step may lead to changes in the physical properties and dissolution characteristics of drugs and thus improve their therapeutic action.
Resumo:
Most studies on measures of transpiration of plants, especially woody fruit, relies on methods of heat supply in the trunk. This study aimed to calibrate the Thermal Dissipation Probe Method (TDP) to estimate the transpiration, study the effects of natural thermal gradients and determine the relation between outside diameter and area of xylem in 'Valencia' orange young plants. TDP were installed in 40 orange plants of 15 months old, planted in boxes of 500 L, in a greenhouse. It was tested the correction of the natural thermal differences (DTN) for the estimation based on two unheated probes. The area of the conductive section was related to the outside diameter of the stem by means of polynomial regression. The equation for estimation of sap flow was calibrated having as standard lysimeter measures of a representative plant. The angular coefficient of the equation for estimating sap flow was adjusted by minimizing the absolute deviation between the sap flow and daily transpiration measured by lysimeter. Based on these results, it was concluded that the method of TDP, adjusting the original calibration and correction of the DTN, was effective in transpiration assessment.
Resumo:
The effects of cryogenic and stress relief treatments on temper carbide precipitation in the cold work tool steel AISI D2 were studied. For the cryogenic treatment the temperature was −196°C and the holding time was 2, 24 or 30 h. The stress relief heat treatment was carried at 130°C/90 min, when applied. All specimens were compared to a standard thermal cycle. Specimens were studied using metallographic characterisation, X-ray diffraction and thermoelectric power measurements. The metallographic characterisation used SEM (scanning electron microscopy) and SEM-FEG (SEM with field emission gun), besides OM (optical microscopy). No variation in the secondary carbides (micrometre sized) precipitation was found. The temper secondary carbides (nanosized) were found to be more finely dispersed in the matrix of the specimens with cryogenic treatment and without stress relief. The refinement of the temper secondary carbides was attributed to a possible in situ carbide precipitation during tempering.
Resumo:
Computational fluid dynamics, CFD, is becoming an essential tool in the prediction of the hydrodynamic efforts and flow characteristics of underwater vehicles for manoeuvring studies. However, when applied to the manoeuvrability of autonomous underwater vehicles, AUVs, most studies have focused on the de- termination of static coefficients without considering the effects of the vehicle control surface deflection. This paper analyses the hydrodynamic efforts generated on an AUV considering the combined effects of the control surface deflection and the angle of attack using CFD software based on the Reynolds-averaged Navier–Stokes formulations. The CFD simulations are also independently conducted for the AUV bare hull and control surface to better identify their individual and interference efforts and to validate the simulations by comparing the experimental results obtained in a towing tank. Several simulations of the bare hull case were conducted to select the k –ω SST turbulent model with the viscosity approach that best predicts its hydrodynamic efforts. Mesh sensitivity analyses were conducted for all simulations. For the flow around the control surfaces, the CFD results were analysed according to two different methodologies, standard and nonlinear. The nonlinear regression methodology provides better results than the standard methodology does for predicting the stall at the control surface. The flow simulations have shown that the occurrence of the control surface stall depends on a linear relationship between the angle of attack and the control surface deflection. This type of information can be used in designing the vehicle’s autopilot system.
Resumo:
The Light Steel Framing building technology was introduced in Brazil in the late 1990s for the construction of residential houses. Because the design system was imported from the United States and is optimised to work well in that temperate climate, some modi fi cations must be made to adapt it for the Brazilian climate. The objective of this paper was to assess the impact of thermal bridging across enclosure elements on the thermal performance of buildings designed with Light Steel Framing in Brazil. The numerical simulation program EnergyPlus and a speci fi c method that considered the effects of metallic structures in the hourly simulations were used for the analysis. Two air-conditioned commercial buildings were used as case studies. The peak thermal load increased approximately 10% when an interior metal frame was included in the numerical simulations compared to non-metallic structures. Even when a metal frame panel was used only for vertical elements in the facade of a building with a conventional concrete structure, the simulations showed a 5% increase in annual energy use.